The Model Predictive Control Toolbox™ offers a comprehensive suite of functions, an intuitive app, Simulink® blocks, and practical reference examples to facilitate the development of model predictive control (MPC) systems. It caters to linear challenges by enabling the creation of implicit, explicit, adaptive, and gain-scheduled MPC strategies. For more complex nonlinear scenarios, users can execute both single-stage and multi-stage nonlinear MPC. Additionally, this toolbox includes deployable optimization solvers and permits the integration of custom solvers. Users can assess the effectiveness of their controllers through closed-loop simulations in MATLAB® and Simulink environments. For applications in automated driving, the toolbox also features MISRA C®- and ISO 26262-compliant blocks and examples, allowing for a swift initiation of projects related to lane keep assist, path planning, path following, and adaptive cruise control. You have the capability to design implicit, gain-scheduled, and adaptive MPC controllers that tackle quadratic programming (QP) problems, and you can generate an explicit MPC controller derived from an implicit design. Furthermore, the toolbox supports discrete control set MPC for handling mixed-integer QP challenges, thus broadening its applicability in diverse control systems. With these extensive features, the toolbox ensures that both novice and experienced users can effectively implement advanced control strategies.