CodeT5 is an innovative pre-trained encoder-decoder model specifically designed for understanding and generating code. This model is identifier-aware and serves as a unified framework for various coding tasks. The official PyTorch implementation originates from a research paper presented at EMNLP 2021 by Salesforce Research. A notable variant, CodeT5-large-ntp-py, has been fine-tuned to excel in Python code generation, forming the core of our CodeRL approach and achieving groundbreaking results in the APPS Python competition-level program synthesis benchmark. This repository includes the necessary code for replicating the experiments conducted with CodeT5. Pre-trained on an extensive dataset of 8.35 million functions across eight programming languages—namely Python, Java, JavaScript, PHP, Ruby, Go, C, and C#—CodeT5 has demonstrated exceptional performance, attaining state-of-the-art results across 14 different sub-tasks in the code intelligence benchmark known as CodeXGLUE. Furthermore, it is capable of generating code directly from natural language descriptions, showcasing its versatility and effectiveness in coding applications.