Best AI Models for Linux of 2025 - Page 2

Find and compare the best AI Models for Linux in 2025

Use the comparison tool below to compare the top AI Models for Linux on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    MPT-7B Reviews

    MPT-7B

    MosaicML

    Free
    We are excited to present MPT-7B, the newest addition to the MosaicML Foundation Series. This transformer model has been meticulously trained from the ground up using 1 trillion tokens of diverse text and code. It is open-source and ready for commercial applications, delivering performance on par with LLaMA-7B. The training process took 9.5 days on the MosaicML platform, requiring no human input and incurring an approximate cost of $200,000. With MPT-7B, you can now train, fine-tune, and launch your own customized MPT models, whether you choose to begin with one of our provided checkpoints or start anew. To provide additional options, we are also introducing three fine-tuned variants alongside the base MPT-7B: MPT-7B-Instruct, MPT-7B-Chat, and MPT-7B-StoryWriter-65k+, the latter boasting an impressive context length of 65,000 tokens, allowing for extensive content generation. These advancements open up new possibilities for developers and researchers looking to leverage the power of transformer models in their projects.
  • 2
    OpenLLaMA Reviews
    OpenLLaMA is an openly licensed reproduction of Meta AI's LLaMA 7B, developed using the RedPajama dataset. The model weights we offer can seamlessly replace the LLaMA 7B in current applications. Additionally, we have created a more compact 3B version of the LLaMA model for those seeking a lighter alternative. This provides users with more flexibility in choosing the right model for their specific needs.
  • 3
    GPT4All Reviews
    GPT4All represents a comprehensive framework designed for the training and deployment of advanced, tailored large language models that can operate efficiently on standard consumer-grade CPUs. Its primary objective is straightforward: to establish itself as the leading instruction-tuned assistant language model that individuals and businesses can access, share, and develop upon without restrictions. Each GPT4All model ranges between 3GB and 8GB in size, making it easy for users to download and integrate into the GPT4All open-source software ecosystem. Nomic AI plays a crucial role in maintaining and supporting this ecosystem, ensuring both quality and security while promoting the accessibility for anyone, whether individuals or enterprises, to train and deploy their own edge-based language models. The significance of data cannot be overstated, as it is a vital component in constructing a robust, general-purpose large language model. To facilitate this, the GPT4All community has established an open-source data lake, which serves as a collaborative platform for contributing valuable instruction and assistant tuning data, thereby enhancing future training efforts for models within the GPT4All framework. This initiative not only fosters innovation but also empowers users to engage actively in the development process.
  • 4
    ChatGLM Reviews
    ChatGLM-6B is a bilingual dialogue model that supports both Chinese and English, built on the General Language Model (GLM) framework and features 6.2 billion parameters. Thanks to model quantization techniques, it can be easily run on standard consumer graphics cards, requiring only 6GB of video memory at the INT4 quantization level. This model employs methodologies akin to those found in ChatGPT but is specifically tailored to enhance Chinese question-and-answer interactions and dialogue. Following extensive training with approximately 1 trillion identifiers in both languages, along with additional supervision, fine-tuning, self-assistance through feedback, and reinforcement learning from human input, ChatGLM-6B has demonstrated an impressive capability to produce responses that resonate well with human users. Its adaptability and performance make it a valuable tool for bilingual communication.
  • 5
    Jan Reviews
    Experience a tenfold increase in productivity through tailored AI assistants, global hotkeys, and integrated AI functionalities. Enjoy smooth incorporation into your mobile tasks, enhanced by sophisticated features. All interactions, settings, and model applications remain securely on your device, allowing for easy export and deletion whenever you choose, ensuring your data privacy is maintained. This approach not only boosts efficiency but also provides peace of mind regarding your personal information.
  • 6
    Mixtral 8x7B Reviews
    The Mixtral 8x7B model is an advanced sparse mixture of experts (SMoE) system that boasts open weights and is released under the Apache 2.0 license. This model demonstrates superior performance compared to Llama 2 70B across various benchmarks while achieving inference speeds that are six times faster. Recognized as the leading open-weight model with a flexible licensing framework, Mixtral also excels in terms of cost-efficiency and performance. Notably, it competes with and often surpasses GPT-3.5 in numerous established benchmarks, highlighting its significance in the field. Its combination of accessibility, speed, and effectiveness makes it a compelling choice for developers seeking high-performing AI solutions.
  • 7
    Llama 3 Reviews
    We have incorporated Llama 3 into Meta AI, our intelligent assistant that enhances how individuals accomplish tasks, innovate, and engage with Meta AI. By utilizing Meta AI for coding and problem-solving, you can experience Llama 3's capabilities first-hand. Whether you are creating agents or other AI-driven applications, Llama 3, available in both 8B and 70B versions, will provide the necessary capabilities and flexibility to bring your ideas to fruition. With the launch of Llama 3, we have also revised our Responsible Use Guide (RUG) to offer extensive guidance on the ethical development of LLMs. Our system-focused strategy encompasses enhancements to our trust and safety mechanisms, including Llama Guard 2, which is designed to align with the newly introduced taxonomy from MLCommons, broadening its scope to cover a wider array of safety categories, alongside code shield and Cybersec Eval 2. Additionally, these advancements aim to ensure a safer and more responsible use of AI technologies in various applications.
  • 8
    Codestral Reviews

    Codestral

    Mistral AI

    Free
    We are excited to unveil Codestral, our inaugural code generation model. This open-weight generative AI system is specifically crafted for tasks related to code generation, enabling developers to seamlessly write and engage with code via a unified instruction and completion API endpoint. As it becomes proficient in both programming languages and English, Codestral is poised to facilitate the creation of sophisticated AI applications tailored for software developers. With a training foundation that encompasses a wide array of over 80 programming languages—ranging from widely-used options like Python, Java, C, C++, JavaScript, and Bash to more niche languages such as Swift and Fortran—Codestral ensures a versatile support system for developers tackling various coding challenges and projects. Its extensive language capabilities empower developers to confidently navigate different coding environments, making Codestral an invaluable asset in the programming landscape.
  • 9
    Llama 3.1 Reviews
    Introducing an open-source AI model that can be fine-tuned, distilled, and deployed across various platforms. Our newest instruction-tuned model comes in three sizes: 8B, 70B, and 405B, giving you options to suit different needs. With our open ecosystem, you can expedite your development process using a diverse array of tailored product offerings designed to meet your specific requirements. You have the flexibility to select between real-time inference and batch inference services according to your project's demands. Additionally, you can download model weights to enhance cost efficiency per token while fine-tuning for your application. Improve performance further by utilizing synthetic data and seamlessly deploy your solutions on-premises or in the cloud. Take advantage of Llama system components and expand the model's capabilities through zero-shot tool usage and retrieval-augmented generation (RAG) to foster agentic behaviors. By utilizing 405B high-quality data, you can refine specialized models tailored to distinct use cases, ensuring optimal functionality for your applications. Ultimately, this empowers developers to create innovative solutions that are both efficient and effective.
  • 10
    Mistral Large Reviews
    Mistral Large stands as the premier language model from Mistral AI, engineered for sophisticated text generation and intricate multilingual reasoning tasks such as text comprehension, transformation, and programming code development. This model encompasses support for languages like English, French, Spanish, German, and Italian, which allows it to grasp grammar intricacies and cultural nuances effectively. With an impressive context window of 32,000 tokens, Mistral Large can retain and reference information from lengthy documents with accuracy. Its abilities in precise instruction adherence and native function-calling enhance the development of applications and the modernization of tech stacks. Available on Mistral's platform, Azure AI Studio, and Azure Machine Learning, it also offers the option for self-deployment, catering to sensitive use cases. Benchmarks reveal that Mistral Large performs exceptionally well, securing its position as the second-best model globally that is accessible via an API, just behind GPT-4, illustrating its competitive edge in the AI landscape. Such capabilities make it an invaluable tool for developers seeking to leverage advanced AI technology.
  • 11
    FLUX.1 Reviews

    FLUX.1

    Black Forest Labs

    Free
    FLUX.1 represents a revolutionary suite of open-source text-to-image models created by Black Forest Labs, achieving new heights in AI-generated imagery with an impressive 12 billion parameters. This model outperforms established competitors such as Midjourney V6, DALL-E 3, and Stable Diffusion 3 Ultra, providing enhanced image quality, intricate details, high prompt fidelity, and adaptability across a variety of styles and scenes. The FLUX.1 suite is available in three distinct variants: Pro for high-end commercial applications, Dev tailored for non-commercial research with efficiency on par with Pro, and Schnell designed for quick personal and local development initiatives under an Apache 2.0 license. Notably, its pioneering use of flow matching alongside rotary positional embeddings facilitates both effective and high-quality image synthesis. As a result, FLUX.1 represents a significant leap forward in the realm of AI-driven visual creativity, showcasing the potential of advancements in machine learning technology. This model not only elevates the standard for image generation but also empowers creators to explore new artistic possibilities.
  • 12
    Llama 3.2 Reviews
    The latest iteration of the open-source AI model, which can be fine-tuned and deployed in various environments, is now offered in multiple versions, including 1B, 3B, 11B, and 90B, alongside the option to continue utilizing Llama 3.1. Llama 3.2 comprises a series of large language models (LLMs) that come pretrained and fine-tuned in 1B and 3B configurations for multilingual text only, while the 11B and 90B models accommodate both text and image inputs, producing text outputs. With this new release, you can create highly effective and efficient applications tailored to your needs. For on-device applications, such as summarizing phone discussions or accessing calendar tools, the 1B or 3B models are ideal choices. Meanwhile, the 11B or 90B models excel in image-related tasks, enabling you to transform existing images or extract additional information from images of your environment. Overall, this diverse range of models allows developers to explore innovative use cases across various domains.
  • 13
    Llama 3.3 Reviews
    The newest version in the Llama series, Llama 3.3, represents a significant advancement in language models aimed at enhancing AI's capabilities in understanding and communication. It boasts improved contextual reasoning, superior language generation, and advanced fine-tuning features aimed at producing exceptionally accurate, human-like responses across a variety of uses. This iteration incorporates a more extensive training dataset, refined algorithms for deeper comprehension, and mitigated biases compared to earlier versions. Llama 3.3 stands out in applications including natural language understanding, creative writing, technical explanations, and multilingual interactions, making it a crucial asset for businesses, developers, and researchers alike. Additionally, its modular architecture facilitates customizable deployment in specific fields, ensuring it remains versatile and high-performing even in large-scale applications. With these enhancements, Llama 3.3 is poised to redefine the standards of AI language models.
  • 14
    Janus-Pro-7B Reviews
    Janus-Pro-7B is a groundbreaking open-source multimodal AI model developed by DeepSeek, expertly crafted to both comprehend and create content involving text, images, and videos. Its distinctive autoregressive architecture incorporates dedicated pathways for visual encoding, which enhances its ability to tackle a wide array of tasks, including text-to-image generation and intricate visual analysis. Demonstrating superior performance against rivals such as DALL-E 3 and Stable Diffusion across multiple benchmarks, it boasts scalability with variants ranging from 1 billion to 7 billion parameters. Released under the MIT License, Janus-Pro-7B is readily accessible for use in both academic and commercial contexts, marking a substantial advancement in AI technology. Furthermore, this model can be utilized seamlessly on popular operating systems such as Linux, MacOS, and Windows via Docker, broadening its reach and usability in various applications.
  • 15
    DeepSeekMath Reviews
    DeepSeekMath is an advanced 7B parameter language model created by DeepSeek-AI, specifically engineered to enhance mathematical reasoning capabilities within open-source language models. Building upon the foundation of DeepSeek-Coder-v1.5, this model undergoes additional pre-training utilizing 120 billion math-related tokens gathered from Common Crawl, complemented by data from natural language and coding sources. It has shown exceptional outcomes, achieving a score of 51.7% on the challenging MATH benchmark without relying on external tools or voting systems, positioning itself as a strong contender against models like Gemini-Ultra and GPT-4. The model's prowess is further bolstered by a carefully curated data selection pipeline and the implementation of Group Relative Policy Optimization (GRPO), which improves both its mathematical reasoning skills and efficiency in memory usage. DeepSeekMath is offered in various formats including base, instruct, and reinforcement learning (RL) versions, catering to both research and commercial interests, and is intended for individuals eager to delve into or leverage sophisticated mathematical problem-solving in the realm of artificial intelligence. Its versatility makes it a valuable resource for researchers and practitioners alike, driving innovation in AI-driven mathematics.
  • 16
    DeepSeek-V2 Reviews
    DeepSeek-V2 is a cutting-edge Mixture-of-Experts (MoE) language model developed by DeepSeek-AI, noted for its cost-effective training and high-efficiency inference features. It boasts an impressive total of 236 billion parameters, with only 21 billion active for each token, and is capable of handling a context length of up to 128K tokens. The model utilizes advanced architectures such as Multi-head Latent Attention (MLA) to optimize inference by minimizing the Key-Value (KV) cache and DeepSeekMoE to enable economical training through sparse computations. Compared to its predecessor, DeepSeek 67B, this model shows remarkable improvements, achieving a 42.5% reduction in training expenses, a 93.3% decrease in KV cache size, and a 5.76-fold increase in generation throughput. Trained on an extensive corpus of 8.1 trillion tokens, DeepSeek-V2 demonstrates exceptional capabilities in language comprehension, programming, and reasoning tasks, positioning it as one of the leading open-source models available today. Its innovative approach not only elevates its performance but also sets new benchmarks within the field of artificial intelligence.
  • 17
    Falcon Mamba 7B Reviews

    Falcon Mamba 7B

    Technology Innovation Institute (TII)

    Free
    Falcon Mamba 7B marks a significant milestone as the inaugural open-source State Space Language Model (SSLM), presenting a revolutionary architecture within the Falcon model family. Celebrated as the premier open-source SSLM globally by Hugging Face, it establishes a new standard for efficiency in artificial intelligence. In contrast to conventional transformers, SSLMs require significantly less memory and can produce lengthy text sequences seamlessly without extra resource demands. Falcon Mamba 7B outperforms top transformer models, such as Meta’s Llama 3.1 8B and Mistral’s 7B, demonstrating enhanced capabilities. This breakthrough not only highlights Abu Dhabi’s dedication to pushing the boundaries of AI research but also positions the region as a pivotal player in the global AI landscape. Such advancements are vital for fostering innovation and collaboration in technology.
  • 18
    Falcon 2 Reviews

    Falcon 2

    Technology Innovation Institute (TII)

    Free
    Falcon 2 11B is a versatile AI model that is open-source, supports multiple languages, and incorporates multimodal features, particularly excelling in vision-to-language tasks. It outperforms Meta’s Llama 3 8B and matches the capabilities of Google’s Gemma 7B, as validated by the Hugging Face Leaderboard. In the future, the development plan includes adopting a 'Mixture of Experts' strategy aimed at significantly improving the model's functionalities, thereby advancing the frontiers of AI technology even further. This evolution promises to deliver remarkable innovations, solidifying Falcon 2's position in the competitive landscape of artificial intelligence.
  • 19
    Falcon 3 Reviews

    Falcon 3

    Technology Innovation Institute (TII)

    Free
    Falcon 3 is a large language model that has been made open-source by the Technology Innovation Institute (TII), aiming to broaden access to advanced AI capabilities. Its design prioritizes efficiency, enabling it to function effectively on lightweight devices like laptops while maintaining high performance levels. The Falcon 3 suite includes four scalable models, each specifically designed for various applications and capable of supporting multiple languages while minimizing resource consumption. This new release in TII's LLM lineup sets a benchmark in reasoning, language comprehension, instruction adherence, coding, and mathematical problem-solving. By offering a blend of robust performance and resource efficiency, Falcon 3 seeks to democratize AI access, allowing users in numerous fields to harness sophisticated technology without the necessity for heavy computational power. Furthermore, this initiative not only enhances individual capabilities but also fosters innovation across different sectors by making advanced AI tools readily available.
  • 20
    Qwen2.5-Max Reviews
    Qwen2.5-Max is an advanced Mixture-of-Experts (MoE) model created by the Qwen team, which has been pretrained on an extensive dataset of over 20 trillion tokens and subsequently enhanced through methods like Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). Its performance in evaluations surpasses that of models such as DeepSeek V3 across various benchmarks, including Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also achieving strong results in other tests like MMLU-Pro. This model is available through an API on Alibaba Cloud, allowing users to easily integrate it into their applications, and it can also be interacted with on Qwen Chat for a hands-on experience. With its superior capabilities, Qwen2.5-Max represents a significant advancement in AI model technology.
  • 21
    Qwen2.5-VL Reviews
    Qwen2.5-VL marks the latest iteration in the Qwen vision-language model series, showcasing notable improvements compared to its predecessor, Qwen2-VL. This advanced model demonstrates exceptional capabilities in visual comprehension, adept at identifying a diverse range of objects such as text, charts, and various graphical elements within images. Functioning as an interactive visual agent, it can reason and effectively manipulate tools, making it suitable for applications involving both computer and mobile device interactions. Furthermore, Qwen2.5-VL is proficient in analyzing videos that are longer than one hour, enabling it to identify pertinent segments within those videos. The model also excels at accurately locating objects in images by creating bounding boxes or point annotations and supplies well-structured JSON outputs for coordinates and attributes. It provides structured data outputs for documents like scanned invoices, forms, and tables, which is particularly advantageous for industries such as finance and commerce. Offered in both base and instruct configurations across 3B, 7B, and 72B models, Qwen2.5-VL can be found on platforms like Hugging Face and ModelScope, further enhancing its accessibility for developers and researchers alike. This model not only elevates the capabilities of vision-language processing but also sets a new standard for future developments in the field.
  • 22
    R1 1776 Reviews

    R1 1776

    Perplexity AI

    Free
    Perplexity AI has released R1 1776 as an open-source large language model (LLM), built on the DeepSeek R1 framework, with the goal of improving transparency and encouraging collaborative efforts in the field of AI development. With this release, researchers and developers can explore the model's architecture and underlying code, providing them the opportunity to enhance and tailor it for diverse use cases. By making R1 1776 available to the public, Perplexity AI seeks to drive innovation while upholding ethical standards in the AI sector. This initiative not only empowers the community but also fosters a culture of shared knowledge and responsibility among AI practitioners.
  • 23
    SmolLM2 Reviews

    SmolLM2

    Hugging Face

    Free
    SmolLM2 comprises an advanced suite of compact language models specifically created for on-device functionalities. This collection features models with varying sizes, including those with 1.7 billion parameters, as well as more streamlined versions at 360 million and 135 million parameters, ensuring efficient performance on even the most limited hardware. They excel in generating text and are fine-tuned for applications requiring real-time responsiveness and minimal latency, delivering high-quality outcomes across a multitude of scenarios such as content generation, coding support, and natural language understanding. The versatility of SmolLM2 positions it as an ideal option for developers aiming to incorporate robust AI capabilities into mobile devices, edge computing solutions, and other settings where resources are constrained. Its design reflects a commitment to balancing performance and accessibility, making cutting-edge AI technology more widely available.
  • 24
    QwQ-Max-Preview Reviews
    QwQ-Max-Preview is a cutting-edge AI model based on the Qwen2.5-Max framework, specifically engineered to excel in areas such as complex reasoning, mathematical problem-solving, programming, and agent tasks. This preview showcases its enhanced capabilities across a variety of general-domain applications while demonstrating proficiency in managing intricate workflows. Anticipated to be officially released as open-source software under the Apache 2.0 license, QwQ-Max-Preview promises significant improvements and upgrades in its final iteration. Additionally, it contributes to the development of a more inclusive AI environment, as evidenced by the forthcoming introduction of the Qwen Chat application and streamlined model versions like QwQ-32B, which cater to developers interested in local deployment solutions. This initiative not only broadens accessibility but also encourages innovation within the AI community.
  • 25
    Mistral Large 2 Reviews
    Mistral AI has introduced the Mistral Large 2, a sophisticated AI model crafted to excel in various domains such as code generation, multilingual understanding, and intricate reasoning tasks. With an impressive 128k context window, this model accommodates a wide array of languages, including English, French, Spanish, and Arabic, while also supporting an extensive list of over 80 programming languages. Designed for high-throughput single-node inference, Mistral Large 2 is perfectly suited for applications requiring large context handling. Its superior performance on benchmarks like MMLU, coupled with improved capabilities in code generation and reasoning, guarantees both accuracy and efficiency in results. Additionally, the model features enhanced function calling and retrieval mechanisms, which are particularly beneficial for complex business applications. This makes Mistral Large 2 not only versatile but also a powerful tool for developers and businesses looking to leverage advanced AI capabilities.