Bokeh simplifies the creation of standard visualizations while also accommodating unique or specialized scenarios. It allows users to publish plots, dashboards, and applications seamlessly on web pages or within Jupyter notebooks. The Python ecosystem boasts a remarkable collection of robust analytical libraries such as NumPy, Scipy, Pandas, Dask, Scikit-Learn, and OpenCV. With its extensive selection of widgets, plotting tools, and user interface events that can initiate genuine Python callbacks, the Bokeh server serves as a vital link, enabling the integration of these libraries into dynamic, interactive visualizations accessible via the browser. Additionally, Microscopium, a project supported by researchers at Monash University, empowers scientists to uncover new functions of genes or drugs through the exploration of extensive image datasets facilitated by Bokeh’s interactive capabilities. Another useful tool, Panel, which is developed by Anaconda, enhances data presentation by leveraging the Bokeh server. It streamlines the creation of custom interactive web applications and dashboards by linking user-defined widgets to a variety of elements, including plots, images, tables, and textual information, thus broadening the scope of data interaction possibilities. This combination of tools fosters a rich environment for data analysis and visualization, making it easier for researchers and developers to share their insights.