Best Deep Learning Software for Small Business - Page 2

Find and compare the best Deep Learning software for Small Business in 2025

Use the comparison tool below to compare the top Deep Learning software for Small Business on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    RapidMiner Reviews
    RapidMiner is redefining enterprise AI so anyone can positively shape the future. RapidMiner empowers data-loving people from all levels to quickly create and implement AI solutions that drive immediate business impact. Our platform unites data prep, machine-learning, and model operations. This provides a user experience that is both rich in data science and simplified for all others. Customers are guaranteed success with our Center of Excellence methodology, RapidMiner Academy and no matter what level of experience or resources they have.
  • 2
    RazorThink Reviews
    RZT aiOS provides all the benefits of a unified AI platform, and more. It's not just a platform, it's an Operating System that connects, manages, and unifies all your AI initiatives. AI developers can now do what used to take months in days thanks to aiOS process management which dramatically increases their productivity. This Operating System provides an intuitive environment for AI development. It allows you to visually build models, explore data and create processing pipelines. You can also run experiments and view analytics. It's easy to do all of this without any advanced software engineering skills.
  • 3
    Auger.AI Reviews

    Auger.AI

    Auger.AI

    $200 per month
    Auger.AI presents a comprehensive solution designed to guarantee the precision of machine learning models. Our Machine Learning Review and Monitoring (MLRAM) tool is pivotal in maintaining the accuracy of your models consistently. Additionally, it calculates the return on investment for your predictive analytics! MLRAM is compatible with any machine learning technology stack, which enhances its versatility. If your machine learning system lifecycle lacks regular accuracy assessments, you might be incurring losses due to faulty predictions. Moreover, the frequent need for model retraining can be costly and may not address issues stemming from concept drift. MLRAM delivers significant benefits for both data scientists and business users, featuring tools like accuracy visualization graphs, performance alerts, anomaly detection, and automated optimized retraining. Integrating your predictive model with MLRAM is as simple as adding a single line of code. We also provide a complimentary one-month trial of MLRAM for eligible users. With Auger.AI, you can confidently use the most precise AutoML platform available today, ensuring your organization maximizes its predictive capabilities.
  • 4
    Amazon Rekognition Reviews
    Amazon Rekognition simplifies the integration of image and video analysis into applications by utilizing reliable, highly scalable deep learning technology that doesn’t necessitate any machine learning knowledge from users. This powerful tool allows for the identification of various elements such as objects, individuals, text, scenes, and activities within images and videos, alongside the capability to flag inappropriate content. Moreover, Amazon Rekognition excels in delivering precise facial analysis and search functions, which can be employed for diverse applications including user authentication, crowd monitoring, and enhancing public safety. Additionally, with the feature known as Amazon Rekognition Custom Labels, businesses can pinpoint specific objects and scenes in images tailored to their operational requirements. For instance, one could create a model designed to recognize particular machine components on a production line or to monitor the health of plants. The beauty of Amazon Rekognition Custom Labels lies in its ability to handle the complexities of model development, ensuring that users need not possess any background in machine learning to effectively utilize this technology. This makes it an accessible tool for a wide range of industries looking to harness the power of image analysis without the steep learning curve typically associated with machine learning.
  • 5
    Google Deep Learning Containers Reviews
    Accelerate the development of your deep learning project on Google Cloud: Utilize Deep Learning Containers to swiftly create prototypes within a reliable and uniform environment for your AI applications, encompassing development, testing, and deployment phases. These Docker images are pre-optimized for performance, thoroughly tested for compatibility, and designed for immediate deployment using popular frameworks. By employing Deep Learning Containers, you ensure a cohesive environment throughout the various services offered by Google Cloud, facilitating effortless scaling in the cloud or transitioning from on-premises setups. You also enjoy the versatility of deploying your applications on platforms such as Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm, giving you multiple options to best suit your project's needs. This flexibility not only enhances efficiency but also enables you to adapt quickly to changing project requirements.
  • 6
    Peltarion Reviews
    The Peltarion Platform is an accessible low-code environment for deep learning that empowers users to swiftly create AI-driven solutions that can scale commercially. It facilitates the entire process of building, adjusting, refining, and deploying deep learning models seamlessly. This comprehensive platform enables you to manage everything from data uploads to model creation and deployment in one place. Renowned organizations such as NASA, Tesla, Dell, and Harvard have leveraged the Peltarion Platform and its earlier version to address complex challenges. Users can either develop their own AI models or take advantage of our pre-trained options, utilizing a simple drag-and-drop interface, including access to the latest advancements. You have complete control over the entire development cycle, from construction and training to fine-tuning and deployment of AI solutions, all seamlessly integrated. By operationalizing AI through this platform, businesses can unlock significant value. For those with no background in AI, our Faster AI course is designed to provide foundational knowledge, and upon completion of seven concise modules, participants will gain the ability to create and customize their own AI models on the Peltarion platform, fostering a new generation of AI practitioners. This initiative not only enhances individual skill sets but also contributes to the broader adoption of AI technology in various industries.
  • 7
    Mobius Labs Reviews
    We make it easy for you to add superhuman computer vision into your applications, devices, and processes to give yourself an unassailable competitive edge.
  • 8
    DeepCube Reviews
    DeepCube is dedicated to advancing deep learning technologies, enhancing the practical application of AI systems in various environments. Among its many patented innovations, the company has developed techniques that significantly accelerate and improve the accuracy of training deep learning models while also enhancing inference performance. Their unique framework is compatible with any existing hardware, whether in data centers or edge devices, achieving over tenfold improvements in speed and memory efficiency. Furthermore, DeepCube offers the sole solution for the effective deployment of deep learning models on intelligent edge devices, overcoming a significant barrier in the field. Traditionally, after completing the training phase, deep learning models demand substantial processing power and memory, which has historically confined their deployment primarily to cloud environments. This innovation by DeepCube promises to revolutionize how deep learning models can be utilized, making them more accessible and efficient across diverse platforms.
  • 9
    NVIDIA GPU-Optimized AMI Reviews
    The NVIDIA GPU-Optimized AMI serves as a virtual machine image designed to enhance your GPU-accelerated workloads in Machine Learning, Deep Learning, Data Science, and High-Performance Computing (HPC). By utilizing this AMI, you can quickly launch a GPU-accelerated EC2 virtual machine instance, complete with a pre-installed Ubuntu operating system, GPU driver, Docker, and the NVIDIA container toolkit, all within a matter of minutes. This AMI simplifies access to NVIDIA's NGC Catalog, which acts as a central hub for GPU-optimized software, enabling users to easily pull and run performance-tuned, thoroughly tested, and NVIDIA-certified Docker containers. The NGC catalog offers complimentary access to a variety of containerized applications for AI, Data Science, and HPC, along with pre-trained models, AI SDKs, and additional resources, allowing data scientists, developers, and researchers to concentrate on creating and deploying innovative solutions. Additionally, this GPU-optimized AMI is available at no charge, with an option for users to purchase enterprise support through NVIDIA AI Enterprise. For further details on obtaining support for this AMI, please refer to the section labeled 'Support Information' below. Moreover, leveraging this AMI can significantly streamline the development process for projects requiring intensive computational resources.
  • 10
    NetApp AIPod Reviews
    NetApp AIPod presents a holistic AI infrastructure solution aimed at simplifying the deployment and oversight of artificial intelligence workloads. By incorporating NVIDIA-validated turnkey solutions like the NVIDIA DGX BasePOD™ alongside NetApp's cloud-integrated all-flash storage, AIPod brings together analytics, training, and inference into one unified and scalable system. This integration allows organizations to efficiently execute AI workflows, encompassing everything from model training to fine-tuning and inference, while also prioritizing data management and security. With a preconfigured infrastructure tailored for AI operations, NetApp AIPod minimizes complexity, speeds up the path to insights, and ensures smooth integration in hybrid cloud settings. Furthermore, its design empowers businesses to leverage AI capabilities more effectively, ultimately enhancing their competitive edge in the market.
  • 11
    Google Cloud Deep Learning VM Image Reviews
    Quickly set up a virtual machine on Google Cloud for your deep learning project using the Deep Learning VM Image, which simplifies the process of launching a VM with essential AI frameworks on Google Compute Engine. This solution allows you to initiate Compute Engine instances that come equipped with popular libraries such as TensorFlow, PyTorch, and scikit-learn, eliminating concerns over software compatibility. Additionally, you have the flexibility to incorporate Cloud GPU and Cloud TPU support effortlessly. The Deep Learning VM Image is designed to support both the latest and most widely used machine learning frameworks, ensuring you have access to cutting-edge tools like TensorFlow and PyTorch. To enhance the speed of your model training and deployment, these images are optimized with the latest NVIDIA® CUDA-X AI libraries and drivers, as well as the Intel® Math Kernel Library. By using this service, you can hit the ground running with all necessary frameworks, libraries, and drivers pre-installed and validated for compatibility. Furthermore, the Deep Learning VM Image provides a smooth notebook experience through its integrated support for JupyterLab, facilitating an efficient workflow for your data science tasks. This combination of features makes it an ideal solution for both beginners and experienced practitioners in the field of machine learning.
  • 12
    Horovod Reviews
    Originally created by Uber, Horovod aims to simplify and accelerate the process of distributed deep learning, significantly reducing model training durations from several days or weeks to mere hours or even minutes. By utilizing Horovod, users can effortlessly scale their existing training scripts to leverage the power of hundreds of GPUs with just a few lines of Python code. It offers flexibility for deployment, as it can be installed on local servers or seamlessly operated in various cloud environments such as AWS, Azure, and Databricks. In addition, Horovod is compatible with Apache Spark, allowing a cohesive integration of data processing and model training into one streamlined pipeline. Once set up, the infrastructure provided by Horovod supports model training across any framework, facilitating easy transitions between TensorFlow, PyTorch, MXNet, and potential future frameworks as the landscape of machine learning technologies continues to progress. This adaptability ensures that users can keep pace with the rapid advancements in the field without being locked into a single technology.
  • 13
    Dragonfly 3D World Reviews
    Dragonfly 3D World, developed by Object Research Systems (ORS), serves as a sophisticated software platform tailored for the visualization, analysis, and collaborative study of multidimensional images across various scientific and industrial domains. This platform boasts an array of robust features that facilitate the visualization, processing, and interpretation of 2D, 3D, and even 4D imaging data, which can be obtained from modalities like CT, MRI, and electron microscopy, among others. Users can engage in interactive exploration of intricate structures through real-time volume rendering, surface rendering, and orthogonal slicing capabilities. The integration of artificial intelligence within Dragonfly empowers users to harness deep learning techniques for tasks such as image segmentation, classification, and object detection, significantly enhancing analytical precision. Additionally, the software includes sophisticated quantitative analysis tools that allow for region-of-interest investigations, measurements, and statistical assessments. The user-friendly graphical interface of Dragonfly ensures that researchers can construct reproducible workflows and efficiently conduct batch processing, promoting consistency and productivity in their work. Ultimately, Dragonfly 3D World stands out as a vital resource for those seeking to push the boundaries of imaging analysis in their respective fields.
  • 14
    FARO Sphere XG Reviews

    FARO Sphere XG

    FARO Technologies, Inc.

    FARO Sphere XG, a cloud-based digital platform for digital reality, provides users with a centralized collaborative experience across all of the company's 3D modeling and reality capture applications. Sphere XG, when paired with Stream, enables faster 3D data collection, processing, and project management anywhere in the world. Sphere XG is a systematized tool that allows users to organize 3D scans, 360-degree photos and 3D models. It also allows them to manage data from different teams around the globe. Sphere XG allows you to view and share 3D point clouds, 360-degree photo documentation, and floorplans all in one place. You can also track the progress of your project over time. Ideal for 4D progress management, where the ability of comparing elements over time is crucial, project managers and VDC manager can better democratize the data and eliminate the necessity to use two platforms.
  • 15
    Winnow Vision Reviews
    Winnow Vision is the most advanced food waste technology available. Winnow Vision uses AI to maximize operational efficiency and data accuracy. This makes it easy to reduce food waste. Join hundreds of kitchens around the world to reduce their costs by as much as 8% per year. Commercial kitchens are finding it harder to increase profitability due to rising food costs. We have found that reducing food waste, by connecting the kitchen and technology, is the fastest way for companies to increase their margins. After just 90 days, Winnow customers have seen a remarkable 28% drop in food costs. Winnow's two food-waste tools - one with cutting-edge AI and the other beloved by more than 1,000 kitchens worldwide - can be tailored to different kitchen needs.
  • 16
    Sia Reviews
    Sia™ is transforming higher education by optimizing student lifecycle management, from admission to retention. This AI tool efficiently handles transcript processing, facilitating credit transfers, and increasing student retention rates. It analyzes students' academic backgrounds and preferences, providing tailored course and career suggestions, thus improving engagement and academic planning. As a virtual assistant on university portals, Sia™ makes information easily accessible, lightening staff workload and elevating the student experience. This innovative system redefines administrative tasks, offering effective, individualized assistance for student achievement.
  • 17
    Caffe Reviews
    Caffe is a deep learning framework designed with a focus on expressiveness, efficiency, and modularity, developed by Berkeley AI Research (BAIR) alongside numerous community contributors. The project was initiated by Yangqing Jia during his doctoral studies at UC Berkeley and is available under the BSD 2-Clause license. For those interested, there is an engaging web image classification demo available for viewing! The framework’s expressive architecture promotes innovation and application development. Users can define models and optimizations through configuration files without the need for hard-coded elements. By simply toggling a flag, users can seamlessly switch between CPU and GPU, allowing for training on powerful GPU machines followed by deployment on standard clusters or mobile devices. The extensible nature of Caffe's codebase supports ongoing development and enhancement. In its inaugural year, Caffe was forked by more than 1,000 developers, who contributed numerous significant changes back to the project. Thanks to these community contributions, the framework remains at the forefront of state-of-the-art code and models. Caffe's speed makes it an ideal choice for both research experiments and industrial applications, with the capability to process upwards of 60 million images daily using a single NVIDIA K40 GPU, demonstrating its robustness and efficacy in handling large-scale tasks. This performance ensures that users can rely on Caffe for both experimentation and deployment in various scenarios.
  • 18
    Deep Learning Training Tool Reviews
    The Intel® Deep Learning SDK offers a comprehensive suite of tools designed for data scientists and software developers to create, train, and implement deep learning solutions effectively. This SDK includes both training and deployment tools that can function independently or in unison, providing a holistic approach to deep learning workflows. Users can seamlessly prepare their training data, design intricate models, and conduct training through automated experiments accompanied by sophisticated visualizations. Additionally, it streamlines the setup and operation of well-known deep learning frameworks that are tailored for Intel® hardware. The intuitive web user interface features a user-friendly wizard that assists in crafting deep learning models, complete with tooltips that guide users through every step of the process. Moreover, this SDK not only enhances productivity but also fosters innovation in the development of AI applications.
  • 19
    Brighter AI Reviews

    Brighter AI

    Brighter AI Technologies

    As facial recognition technology advances, the collection of public video footage poses significant privacy threats. Brighter AI's Precision Blur stands out as the leading solution for accurate face redaction globally. Their innovative Deep Natural Anonymization leverages generative AI to generate synthetic face overlays that ensure individuals remain unrecognizable, all while maintaining the quality necessary for machine learning applications. The Selective Redaction interface empowers users to choose which personal information in videos to anonymize selectively. In specific scenarios, like those encountered in media and law enforcement, it may not be necessary to blur every face. Following automated detection processes, users have the option to individually select or deselect objects. Furthermore, the Analytics Endpoint delivers essential metadata linked to the original elements, including bounding box coordinates, facial landmarks, and attributes of individuals. With JSON outputs, users can access pertinent information while ensuring that images or videos remain compliant and anonymized, preserving privacy in an increasingly digital world. This combination of features not only enhances privacy but also supports various professional applications effectively.
  • 20
    DataRobot Reviews
    AI Cloud represents an innovative strategy designed to meet the current demands, challenges, and potential of artificial intelligence. This comprehensive system acts as a single source of truth, expediting the process of bringing AI solutions into production for organizations of all sizes. Users benefit from a collaborative environment tailored for ongoing enhancements throughout the entire AI lifecycle. The AI Catalog simplifies the process of discovering, sharing, tagging, and reusing data, which accelerates deployment and fosters teamwork. This catalog ensures that users can easily access relevant data to resolve business issues while maintaining high standards of security, compliance, and consistency. If your database is subject to a network policy restricting access to specific IP addresses, please reach out to Support for assistance in obtaining a list of IPs that should be added to your network policy for whitelisting, ensuring that your operations run smoothly. Additionally, leveraging AI Cloud can significantly improve your organization’s ability to innovate and adapt in a rapidly evolving technological landscape.
  • 21
    MatConvNet Reviews
    The VLFeat open source library offers a range of well-known algorithms focused on computer vision, particularly for tasks such as image comprehension and the extraction and matching of local features. Among its various algorithms are Fisher Vector, VLAD, SIFT, MSER, k-means, hierarchical k-means, the agglomerative information bottleneck, SLIC superpixels, quick shift superpixels, and large scale SVM training, among many others. Developed in C to ensure high performance and broad compatibility, it also has MATLAB interfaces that enhance user accessibility, complemented by thorough documentation. This library is compatible with operating systems including Windows, Mac OS X, and Linux, making it widely usable across different platforms. Additionally, MatConvNet serves as a MATLAB toolbox designed specifically for implementing Convolutional Neural Networks (CNNs) tailored for various computer vision applications. Known for its simplicity and efficiency, MatConvNet is capable of running and training cutting-edge CNNs, with numerous pre-trained models available for tasks such as image classification, segmentation, face detection, and text recognition. The combination of these tools provides a robust framework for researchers and developers in the field of computer vision.
  • 22
    IBM Watson Machine Learning Accelerator Reviews
    Enhance the efficiency of your deep learning projects and reduce the time it takes to realize value through AI model training and inference. As technology continues to improve in areas like computation, algorithms, and data accessibility, more businesses are embracing deep learning to derive and expand insights in fields such as speech recognition, natural language processing, and image classification. This powerful technology is capable of analyzing text, images, audio, and video on a large scale, allowing for the generation of patterns used in recommendation systems, sentiment analysis, financial risk assessments, and anomaly detection. The significant computational resources needed to handle neural networks stem from their complexity, including multiple layers and substantial training data requirements. Additionally, organizations face challenges in demonstrating the effectiveness of deep learning initiatives that are executed in isolation, which can hinder broader adoption and integration. The shift towards more collaborative approaches may help mitigate these issues and enhance the overall impact of deep learning strategies within companies.
  • 23
    Run:AI Reviews
    AI Infrastructure Virtualization Software. Enhance oversight and management of AI tasks to optimize GPU usage. Run:AI has pioneered the first virtualization layer specifically designed for deep learning training models. By decoupling workloads from the underlying hardware, Run:AI establishes a collective resource pool that can be allocated as needed, ensuring that valuable GPU resources are fully utilized. This approach allows for effective management of costly GPU allocations. With Run:AI’s scheduling system, IT departments can direct, prioritize, and synchronize computational resources for data science projects with overarching business objectives. Advanced tools for monitoring, job queuing, and the automatic preemption of tasks according to priority levels provide IT with comprehensive control over GPU resource utilization. Furthermore, by forming a versatile ‘virtual resource pool,’ IT executives can gain insights into their entire infrastructure’s capacity and usage, whether hosted on-site or in the cloud, thus facilitating more informed decision-making. This comprehensive visibility ultimately drives efficiency and enhances resource management.
  • 24
    FeedStock Synapse Reviews
    FeedStock employs advanced multilingual deep learning technology to capture, recognize, and extract crucial information from your communication channels, transforming it into valuable actionable insights. The complexity of B2B buying has significantly evolved, as evidenced by the increase in necessary contacts for making purchasing decisions, which rose from 17 in 2019 to 27 by 2021. With fewer face-to-face interactions and increasing challenges in outbound growth, our fully automated intelligent assistance is designed to enhance revenue generation for relationship-focused sales teams. By analyzing client interactions directly from your inbox, we unlock hidden growth potential through previously unnoticed insights. You can expect immediate value without the burden of expensive, lengthy adoption processes; when you activate FeedStock, it is fully operational. We capture and categorize ten times more relationships, extract millions of topics, and provide unmatched proprietary insights that drive your business growth, ensuring you stay ahead in a rapidly changing market landscape. This streamlined approach empowers your teams to focus on what really matters: building stronger connections and driving sales.
  • 25
    Dataloop AI Reviews
    Manage unstructured data to develop AI solutions in record time. Enterprise-grade data platform with vision AI. Dataloop offers a single-stop-shop for building and deploying powerful data pipelines for computer vision, data labeling, automation of data operations, customizing production pipelines, and weaving in the human for data validation. Our vision is to make machine-learning-based systems affordable, scalable and accessible for everyone. Explore and analyze large quantities of unstructured information from diverse sources. Use automated preprocessing to find similar data and identify the data you require. Curate, version, cleanse, and route data to where it's required to create exceptional AI apps.