Best Fuzz Testing Apps for Android of 2025

Find and compare the best Fuzz Testing apps for Android in 2025

Use the comparison tool below to compare the top Fuzz Testing apps for Android on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Honggfuzz Reviews
    Honggfuzz is a software fuzzer focused on enhancing security through its advanced fuzzing techniques. It employs evolutionary and feedback-driven methods that rely on both software and hardware-based code coverage. This tool is designed to operate in a multi-process and multi-threaded environment, allowing users to maximize their CPU's potential without needing to launch multiple fuzzer instances. The file corpus is seamlessly shared and refined across all processes undergoing fuzzing, which greatly enhances efficiency. When persistent fuzzing mode is activated, Honggfuzz exhibits remarkable speed, capable of executing a simple or empty LLVMFuzzerTestOneInput function at an impressive rate of up to one million iterations per second on modern CPUs. It has a proven history of identifying security vulnerabilities, including the notable discovery of the only critical vulnerability in OpenSSL to date. Unlike other fuzzing tools, Honggfuzz can detect and report on hijacked or ignored signals that result from crashes, making it a valuable asset for identifying hidden issues within fuzzed programs. Its robust features make it an essential tool for security researchers aiming to uncover hidden flaws in software systems.
  • 2
    afl-unicorn Reviews

    afl-unicorn

    Battelle

    Free
    AFL-Unicorn provides the capability to fuzz any binary that can be emulated using the Unicorn Engine, allowing you to target specific code segments for testing. If you can emulate the desired code with the Unicorn Engine, you can effectively use AFL-Unicorn for fuzzing purposes. The Unicorn Mode incorporates block-edge instrumentation similar to what AFL's QEMU mode employs, enabling AFL to gather block coverage information from the emulated code snippets to drive its input generation process. The key to this functionality lies in the careful setup of a Unicorn-based test harness, which is responsible for loading the target code, initializing the state, and incorporating data mutated by AFL from its disk storage. After establishing these parameters, the test harness emulates the binary code of the target, and upon encountering a crash or error, triggers a signal to indicate the issue. While this framework has primarily been tested on Ubuntu 16.04 LTS, it is designed to be compatible with any operating system that can run both AFL and Unicorn without issues. With this setup, developers can enhance their fuzzing efforts and improve their binary analysis workflows significantly.
  • Previous
  • You're on page 1
  • Next