Best Graph Databases for Mac of 2025

Find and compare the best Graph Databases for Mac in 2025

Use the comparison tool below to compare the top Graph Databases for Mac on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Redis Reviews
    Redis Labs is the home of Redis. Redis Enterprise is the best Redis version. Redis Enterprise is more than a cache. Redis Enterprise can be free in the cloud with NoSQL and data caching using the fastest in-memory database. Redis can be scaled, enterprise-grade resilience, massive scaling, ease of administration, and operational simplicity. Redis in the Cloud is a favorite of DevOps. Developers have access to enhanced data structures and a variety modules. This allows them to innovate faster and has a faster time-to-market. CIOs love the security and expert support of Redis, which provides 99.999% uptime. Use relational databases for active-active, geodistribution, conflict distribution, reads/writes in multiple regions to the same data set. Redis Enterprise offers flexible deployment options. Redis Labs is the home of Redis. Redis JSON, Redis Java, Python Redis, Redis on Kubernetes & Redis gui best practices.
  • 2
    Apache Cassandra Reviews

    Apache Cassandra

    Apache Software Foundation

    1 Rating
    Apache Cassandra is an ideal database solution for situations that require both high scalability and availability while maintaining optimal performance. Its linear scalability and established fault-tolerance capabilities, whether on standard hardware or cloud environments, position it as a top-tier choice for essential data management. Additionally, Cassandra excels in its ability to replicate data across various datacenters, ensuring minimal latency for users and offering reassurance by safeguarding against regional failures. This unique combination of features makes Cassandra a reliable option for businesses that prioritize resilience and efficiency in their data operations.
  • 3
    Stardog Reviews

    Stardog

    Stardog Union

    $0
    Data engineers and scientists can be 95% better at their jobs with ready access to the most flexible semantic layer, explainable AI and reusable data modelling. They can create and expand semantic models, understand data interrelationships, and run federated query to speed up time to insight. Stardog's graph data virtualization and high performance graph database are the best available -- at a price that is up to 57x less than competitors -- to connect any data source, warehouse, or enterprise data lakehouse without copying or moving data. Scale users and use cases at a lower infrastructure cost. Stardog's intelligent inference engine applies expert knowledge dynamically at query times to uncover hidden patterns and unexpected insights in relationships that lead to better data-informed business decisions and outcomes.
  • 4
    Graphlytic Reviews

    Graphlytic

    Demtec

    19 EUR/month
    Graphlytic is a web-based BI platform that allows knowledge graph visualization and analysis. Interactively explore the graph and look for patterns using the Cypher query language or query templates for non-technical users. Users can also use filters to find answers to any graph question. The graph visualization provides deep insights into industries such as scientific research and anti-fraud investigation. Even users with little knowledge of graph theory can quickly explore the data. Cytoscape.js allows graph rendering. It can render tens to thousands of nodes and hundreds upon thousands of relationships. The application is available in three formats: Desktop, Cloud, or Server. Graphlytic Desktop is a Neo4j Desktop app that can be installed in just a few mouse clicks. Cloud instances are great for small teams who don't want or need to worry about installing and need to be up and running quickly.
  • 5
    OrigoDB Reviews

    OrigoDB

    Origo

    €200 per GB RAM per server
    OrigoDB allows you to create high-quality, mission-critical systems that deliver real-time performance while significantly reducing time and costs. This is not just empty advertising! We encourage you to continue reading for a straightforward overview of our features. Feel free to reach out with any inquiries or download and give it a try today! Operations performed in memory are significantly quicker than those conducted on disk. An individual OrigoDB engine is capable of processing millions of read transactions and thousands of write transactions per second, all while ensuring synchronous command journaling to a local SSD. This capability is the primary motivation behind the development of OrigoDB. Utilizing a single object-oriented domain model is much more efficient than managing an entire stack that encompasses a relational model, object/relational mapping, data access code, views, and stored procedures, which can lead to unnecessary complexity! Furthermore, the OrigoDB engine provides complete ACID compliance right from the start. Commands are executed sequentially, allowing the in-memory model to transition smoothly from one consistent state to another, ensuring data integrity at all times. This streamlined approach ultimately enhances overall system performance and reliability.
  • 6
    PuppyGraph Reviews
    PuppyGraph allows you to effortlessly query one or multiple data sources through a cohesive graph model. Traditional graph databases can be costly, require extensive setup time, and necessitate a specialized team to maintain. They often take hours to execute multi-hop queries and encounter difficulties when managing datasets larger than 100GB. Having a separate graph database can complicate your overall architecture due to fragile ETL processes, ultimately leading to increased total cost of ownership (TCO). With PuppyGraph, you can connect to any data source, regardless of its location, enabling cross-cloud and cross-region graph analytics without the need for intricate ETLs or data duplication. By directly linking to your data warehouses and lakes, PuppyGraph allows you to query your data as a graph without the burden of constructing and maintaining lengthy ETL pipelines typical of conventional graph database configurations. There's no longer a need to deal with delays in data access or unreliable ETL operations. Additionally, PuppyGraph resolves scalability challenges associated with graphs by decoupling computation from storage, allowing for more efficient data handling. This innovative approach not only enhances performance but also simplifies your data management strategy.
  • 7
    GraphDB Reviews
    *GraphDB allows the creation of large knowledge graphs by linking diverse data and indexing it for semantic search. * GraphDB is a robust and efficient graph database that supports RDF and SPARQL. The GraphDB database supports a highly accessible replication cluster. This has been demonstrated in a variety of enterprise use cases that required resilience for data loading and query answering. Visit the GraphDB product page for a quick overview and a link to download the latest releases. GraphDB uses RDF4J to store and query data. It also supports a wide range of query languages (e.g. SPARQL and SeRQL), and RDF syntaxes such as RDF/XML and Turtle.
  • 8
    Memgraph Reviews
    Memgraph offers a light and powerful graph platform comprising the Memgraph Graph Database, MAGE Library, and Memgraph Lab Visualization. Memgraph is a dynamic, lightweight graph database optimized for analyzing data, relationships, and dependencies quickly and efficiently. It comes with a rich suite of pre-built deep path traversal algorithms and a library of traditional, dynamic, and ML algorithms tailored for advanced graph analysis, making Memgraph an excellent choice in critical decision-making scenarios such as risk assessment (fraud detection, cybersecurity threat analysis, and criminal risk assessment), 360-degree data and network exploration (Identity and Access Management (IAM), Master Data Management (MDM), Bill of Materials (BOM)), and logistics and network optimization. Memgraph's vibrant open-source community brings together over 150,000 developers in more than 100 countries to exchange ideas and optimize the next generation of in-memory data-driven applications across GenAI/ LLMs and real-time analytics performed with streaming data.
  • 9
    Memstate Reviews

    Memstate

    Memstate

    €200 per GB RAM per server
    Create high-quality, essential applications that deliver real-time performance while significantly reducing both time and costs. Memstate is a groundbreaking solution that streamlines data management. The traditional process of transferring data between disk and RAM is not only highly inefficient, but it also necessitates numerous layers of complex software that can be entirely removed. With Memstate, you can organize and handle your data in memory, achieving seamless persistence, concurrency control, and transactions that meet rigorous ACID standards. This approach can enhance your application’s speed by 100 times and boost developer productivity by tenfold. Although Memstate can be applied in various scenarios, it is primarily tailored to manage complex Online Transaction Processing (OLTP) workloads commonly found in enterprise applications. In-memory operations provide a performance advantage that is exponentially greater than that of disk-based operations. A single Memstate engine is capable of processing millions of read transactions and tens of thousands of write transactions each second, all while maintaining submillisecond latency, making it an exceptional choice for high-demand environments. Embrace this innovative technology to elevate your applications and maximize efficiency across the board.
  • 10
    HyperGraphDB Reviews
    HyperGraphDB serves as a versatile, open-source data storage solution founded on the sophisticated knowledge management framework of directed hypergraphs. Primarily created for persistent memory applications in knowledge management, artificial intelligence, and semantic web initiatives, it can also function as an embedded object-oriented database suitable for Java applications of varying scales, in addition to serving as a graph database or a non-SQL relational database. Built upon a foundation of generalized hypergraphs, HyperGraphDB utilizes tuples as its fundamental storage units, which can consist of zero or more other tuples; these individual tuples are referred to as atoms. The data model can be perceived as relational, permitting higher-order, n-ary relationships, or as graph-based, where edges can connect to an arbitrary assortment of nodes and other edges. Each atom is associated with a strongly-typed value that can be customized extensively, as the type system that governs these values is inherently embedded within the hypergraph structure. This flexibility allows developers to tailor the database according to specific project requirements, making it a robust choice for a wide range of applications.
  • 11
    RecallGraph Reviews
    RecallGraph is a versioned graph data store. It retains all changes its data (vertices, edges) have undergone to get to their current state. It supports point-in time graph traversals that allow the user to query any past state of a graph as well as the present. RecallGraph can be used in situations where data is best represented using a network of edges and vertices (i.e., as a graph). 1. Both edges and vertices can contain properties in the form attribute/value pairs (equivalent of JSON objects). 2. Documents (vertices/edges), can change throughout their lives (both in their individual attributes/values as well as in their relationships to each other). 3. Documents from the past are just as important as their current states, so it is essential to retain and queryable their change history. Also see this blog post for an intro - https://blog.recallgraph.tech/never-lose-your-old-data-again.
  • 12
    Apache TinkerPop Reviews

    Apache TinkerPop

    Apache Software Foundation

    Free
    Apache TinkerPop™ serves as a versatile graph computing framework suitable for both online transaction processing (OLTP) in graph databases and online analytical processing (OLAP) in graph analytic systems. Central to this framework is Gremlin, a powerful graph traversal language that allows users to elegantly articulate intricate queries or traversals on their application's property graph. Each traversal in Gremlin is made up of a series of steps that can be nested, providing flexibility and depth in how data is navigated. At its core, a graph consists of interconnected vertices and edges, where both can hold various key/value pairs known as properties. Vertices represent distinct entities such as individuals, locations, or events, while edges symbolize the relationships that exist between these vertices. For example, one vertex might represent a person who knows another, has participated in a specific event, or has visited a certain location recently. This framework is particularly beneficial when dealing with a complex domain of diverse objects (vertices) that can be interconnected through numerous types of relationships (edges). Understanding this structure allows users to leverage the full potential of their data and uncover valuable insights within their networks.
  • 13
    ArcadeDB Reviews
    Effortlessly handle intricate models with ArcadeDB while ensuring no sacrifices are made. Forget the need for Polyglot Persistence; there's no requirement for various databases. Within a single ArcadeDB Multi-Model database, you can efficiently store graphs, documents, key-value pairs, and time series data all together. Because each model is inherently integrated into the database engine, concerns about translation delays are eliminated. ArcadeDB’s engine, crafted using advanced technology, can process millions of records every second. What sets ArcadeDB apart is its consistent traversal speed, which remains unaffected by the size of the database, whether it contains a handful of records or billions. Furthermore, ArcadeDB can serve as an embedded database on a single server and has the capability to scale across multiple servers using Kubernetes. Its versatility allows it to operate on any platform while maintaining a minimal resource footprint. Your data's security is paramount; our robust, fully transactional engine guarantees durability for critical production databases. To uphold consistency across various servers, ArcadeDB employs a Raft Consensus Algorithm, ensuring that your data remains reliable and synchronized even in a distributed environment. With ArcadeDB, you can confidently manage your data needs without the hassle of juggling multiple systems.
  • 14
    AllegroGraph Reviews
    AllegroGraph is a revolutionary solution that allows infinite data integration. It uses a patented approach that unifies all data and siloed information into an Entity Event Knowledge Graph solution that supports massive big data analytics. AllegroGraph uses unique federated sharding capabilities to drive 360-degree insights, and enable complex reasoning across a distributed Knowledge Graph. AllegroGraph offers users an integrated version Gruff, a browser-based graph visualization tool that allows you to explore and discover connections within enterprise Knowledge Graphs. Franz's Knowledge Graph Solution offers both technology and services to help build industrial strength Entity Event Knowledge Graphs. It is based on the best-of-class products, tools, knowledge, skills, and experience.
  • 15
    Neo4j Reviews
    Neo4j's graph platform is designed to help you leverage data and data relationships. Developers can create intelligent applications that use Neo4j to traverse today's interconnected, large datasets in real-time. Neo4j's graph database is powered by a native graph storage engine and processing engine. It provides unique, actionable insights through an intuitive, flexible, and secure database.
  • 16
    JanusGraph Reviews
    JanusGraph stands out as a highly scalable graph database designed for efficiently storing and querying extensive graphs that can comprise hundreds of billions of vertices and edges, all managed across a cluster of multiple machines. This project, which operates under The Linux Foundation, boasts contributions from notable organizations such as Expero, Google, GRAKN.AI, Hortonworks, IBM, and Amazon. It offers both elastic and linear scalability to accommodate an expanding data set and user community. Key features include robust data distribution and replication methods to enhance performance and ensure fault tolerance. Additionally, JanusGraph supports multi-datacenter high availability and provides hot backups for data security. All these capabilities are available without any associated costs, eliminating the necessity for purchasing commercial licenses, as it is entirely open source and governed by the Apache 2 license. Furthermore, JanusGraph functions as a transactional database capable of handling thousands of simultaneous users performing complex graph traversals in real time. It ensures support for both ACID properties and eventual consistency, catering to various operational needs. Beyond online transactional processing (OLTP), JanusGraph also facilitates global graph analytics (OLAP) through its integration with Apache Spark, making it a versatile tool for data analysis and visualization. This combination of features makes JanusGraph a powerful choice for organizations looking to leverage graph data effectively.
  • 17
    Cayley Reviews
    Cayley is an open-source database tailored for Linked Data, drawing inspiration from the graph database that supports Google's Knowledge Graph, previously known as Freebase. This graph database is crafted for user-friendliness and adept at handling intricate data structures, featuring an integrated query editor, a visualizer, and a Read-Eval-Print Loop (REPL). It supports various query languages, including Gizmo, which is influenced by Gremlin, a GraphQL-like query language, and MQL, a streamlined version catering to Freebase enthusiasts. Cayley's modular architecture allows seamless integration with preferred programming languages and backend storage solutions, making it production-ready, thoroughly tested, and utilized by numerous companies for their operational tasks. Additionally, it is optimized for application use, demonstrating impressive performance metrics; for instance, testing has shown that it can effortlessly manage 134 million quads in LevelDB on consumer-grade hardware from 2014, with multi-hop intersection queries—such as finding films featuring both X and Y—executing in about 150 milliseconds. By default, Cayley is set up to operate in-memory, which is what the backend memstore refers to, thereby enhancing its speed and efficiency for data retrieval and manipulation. Overall, Cayley offers a powerful solution for those looking to leverage linked data in their applications.
  • 18
    Sparksee Reviews

    Sparksee

    Sparsity Technologies

    Sparksee, which was previously referred to as DEX, optimizes both space and performance while maintaining a compact design that enables swift analysis of extensive networks. It supports a wide range of programming languages including .Net, C++, Python, Objective-C, and Java, making it versatile across various operating systems. The graph data is efficiently organized using bitmap data structures, achieving significant compression ratios. These bitmaps are divided into chunks that align with disk pages, enhancing input/output locality for better performance. By leveraging bitmaps, computations are executed using binary logic instructions that facilitate efficient processing in pipelined architectures. The system features complete native indexing, which ensures rapid access to all graph data structures. Node connections are also encoded as bitmaps, further reducing their storage footprint. Advanced I/O strategies are implemented to minimize the frequency of data pages being loaded into memory, ensuring optimal resource usage. Each unique value in the database is stored only once, effectively eliminating unnecessary redundancy, and contributing to overall efficiency. This combination of features makes Sparksee a powerful tool for handling large-scale graph data analyses.
  • Previous
  • You're on page 1
  • Next