Best LLM Evaluation Tools in Germany

Find and compare the best LLM Evaluation tools in Germany in 2025

Use the comparison tool below to compare the top LLM Evaluation tools in Germany on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    Vertex AI Reviews

    Vertex AI

    Google

    Free ($300 in free credits)
    666 Ratings
    See Tool
    Learn More
    The evaluation of large language models (LLMs) within Vertex AI is centered around measuring their effectiveness in a variety of natural language processing applications. Vertex AI offers comprehensive tools designed for assessing LLM capabilities in areas such as text creation, answering queries, and translating languages, facilitating model refinement for improved precision and relevance. Through these evaluations, companies can enhance their AI systems to better align with their specific requirements. Additionally, new users are granted $300 in free credits, allowing them to delve into the evaluation process and experiment with LLMs in their own settings. This feature empowers organizations to boost LLM performance and seamlessly incorporate them into their applications with assurance.
  • 2
    LM-Kit.NET Reviews

    LM-Kit.NET

    LM-Kit

    Free (Community) or $1000/year
    3 Ratings
    See Tool
    Learn More
    LM-Kit.NET is an enterprise-grade toolkit designed for seamlessly integrating generative AI into your .NET applications, fully supporting Windows, Linux, and macOS. Empower your C# and VB.NET projects with a flexible platform that simplifies the creation and orchestration of dynamic AI agents. Leverage efficient Small Language Models for on‑device inference, reducing computational load, minimizing latency, and enhancing security by processing data locally. Experience the power of Retrieval‑Augmented Generation (RAG) to boost accuracy and relevance, while advanced AI agents simplify complex workflows and accelerate development. Native SDKs ensure smooth integration and high performance across diverse platforms. With robust support for custom AI agent development and multi‑agent orchestration, LM‑Kit.NET streamlines prototyping, deployment, and scalability—enabling you to build smarter, faster, and more secure solutions trusted by professionals worldwide.
  • 3
    Ango Hub Reviews
    Ango Hub is an all-in-one, quality-oriented data annotation platform that AI teams can use. Ango Hub is available on-premise and in the cloud. It allows AI teams and their data annotation workforces to quickly and efficiently annotate their data without compromising quality. Ango Hub is the only data annotation platform that focuses on quality. It features features that enhance the quality of your annotations. These include a centralized labeling system, a real time issue system, review workflows and sample label libraries. There is also consensus up to 30 on the same asset. Ango Hub is versatile as well. It supports all data types that your team might require, including image, audio, text and native PDF. There are nearly twenty different labeling tools that you can use to annotate data. Some of these tools are unique to Ango hub, such as rotated bounding box, unlimited conditional questions, label relations and table-based labels for more complicated labeling tasks.
  • 4
    Langfuse Reviews

    Langfuse

    Langfuse

    $29/month
    1 Rating
    Langfuse is a free and open-source LLM engineering platform that helps teams to debug, analyze, and iterate their LLM Applications. Observability: Incorporate Langfuse into your app to start ingesting traces. Langfuse UI : inspect and debug complex logs, user sessions and user sessions Langfuse Prompts: Manage versions, deploy prompts and manage prompts within Langfuse Analytics: Track metrics such as cost, latency and quality (LLM) to gain insights through dashboards & data exports Evals: Calculate and collect scores for your LLM completions Experiments: Track app behavior and test it before deploying new versions Why Langfuse? - Open source - Models and frameworks are agnostic - Built for production - Incrementally adaptable - Start with a single LLM or integration call, then expand to the full tracing for complex chains/agents - Use GET to create downstream use cases and export the data
  • 5
    BenchLLM Reviews
    Utilize BenchLLM to assess your code in real-time, creating comprehensive test suites for your models while generating detailed quality reports. You can select from automated, interactive, or customized evaluation methodologies. Our dedicated team of engineers is passionate about developing AI solutions without sacrificing the balance between the strength and adaptability of AI and reliable outcomes. We've created a versatile and open-source LLM evaluation tool that we always wished existed. Execute and review models effortlessly with intuitive CLI commands, employing this interface as a testing instrument for your CI/CD workflows. Keep track of model performance and identify potential regressions in a production environment. Assess your code instantly, as BenchLLM is compatible with OpenAI, Langchain, and a variety of other APIs right out of the box. Explore diverse evaluation strategies and present valuable insights through visual reports, ensuring that your AI models meet the highest standards. Our goal is to empower developers with the tools they need for seamless integration and evaluation.
  • 6
    Comet Reviews

    Comet

    Comet

    $179 per user per month
    Manage and optimize models throughout the entire ML lifecycle. This includes experiment tracking, monitoring production models, and more. The platform was designed to meet the demands of large enterprise teams that deploy ML at scale. It supports any deployment strategy, whether it is private cloud, hybrid, or on-premise servers. Add two lines of code into your notebook or script to start tracking your experiments. It works with any machine-learning library and for any task. To understand differences in model performance, you can easily compare code, hyperparameters and metrics. Monitor your models from training to production. You can get alerts when something is wrong and debug your model to fix it. You can increase productivity, collaboration, visibility, and visibility among data scientists, data science groups, and even business stakeholders.
  • 7
    Giskard Reviews
    Giskard provides interfaces to AI & Business teams for evaluating and testing ML models using automated tests and collaborative feedback. Giskard accelerates teamwork to validate ML model validation and gives you peace-of-mind to eliminate biases, drift, or regression before deploying ML models into production.
  • 8
    PromptLayer Reviews

    PromptLayer

    PromptLayer

    Free
    Introducing the inaugural platform designed specifically for prompt engineers, where you can log OpenAI requests, review usage history, monitor performance, and easily manage your prompt templates. With this tool, you’ll never lose track of that perfect prompt again, ensuring GPT operates seamlessly in production. More than 1,000 engineers have placed their trust in this platform to version their prompts and oversee API utilization effectively. Begin integrating your prompts into production by creating an account on PromptLayer; just click “log in” to get started. Once you’ve logged in, generate an API key and make sure to store it securely. After you’ve executed a few requests, you’ll find them displayed on the PromptLayer dashboard! Additionally, you can leverage PromptLayer alongside LangChain, a widely used Python library that facilitates the development of LLM applications with a suite of useful features like chains, agents, and memory capabilities. Currently, the main method to access PromptLayer is via our Python wrapper library, which you can install effortlessly using pip. This streamlined approach enhances your workflow and maximizes the efficiency of your prompt engineering endeavors.
  • 9
    Klu Reviews
    Klu.ai, a Generative AI Platform, simplifies the design, deployment, and optimization of AI applications. Klu integrates your Large Language Models and incorporates data from diverse sources to give your applications unique context. Klu accelerates the building of applications using language models such as Anthropic Claude (Azure OpenAI), GPT-4 (Google's GPT-4), and over 15 others. It allows rapid prompt/model experiments, data collection and user feedback and model fine tuning while cost-effectively optimising performance. Ship prompt generation, chat experiences and workflows in minutes. Klu offers SDKs for all capabilities and an API-first strategy to enable developer productivity. Klu automatically provides abstractions to common LLM/GenAI usage cases, such as: LLM connectors and vector storage, prompt templates, observability and evaluation/testing tools.
  • 10
    Athina AI Reviews

    Athina AI

    Athina AI

    Free
    Athina functions as a collaborative platform for AI development, empowering teams to efficiently create, test, and oversee their AI applications. It includes a variety of features such as prompt management, evaluation tools, dataset management, and observability, all aimed at facilitating the development of dependable AI systems. With the ability to integrate various models and services, including custom solutions, Athina also prioritizes data privacy through detailed access controls and options for self-hosted deployments. Moreover, the platform adheres to SOC-2 Type 2 compliance standards, ensuring a secure setting for AI development activities. Its intuitive interface enables seamless collaboration between both technical and non-technical team members, significantly speeding up the process of deploying AI capabilities. Ultimately, Athina stands out as a versatile solution that helps teams harness the full potential of artificial intelligence.
  • 11
    OpenPipe Reviews

    OpenPipe

    OpenPipe

    $1.20 per 1M tokens
    OpenPipe offers an efficient platform for developers to fine-tune their models. It allows you to keep your datasets, models, and evaluations organized in a single location. You can train new models effortlessly with just a click. The system automatically logs all LLM requests and responses for easy reference. You can create datasets from the data you've captured, and even train multiple base models using the same dataset simultaneously. Our managed endpoints are designed to handle millions of requests seamlessly. Additionally, you can write evaluations and compare the outputs of different models side by side for better insights. A few simple lines of code can get you started; just swap out your Python or Javascript OpenAI SDK with an OpenPipe API key. Enhance the searchability of your data by using custom tags. Notably, smaller specialized models are significantly cheaper to operate compared to large multipurpose LLMs. Transitioning from prompts to models can be achieved in minutes instead of weeks. Our fine-tuned Mistral and Llama 2 models routinely exceed the performance of GPT-4-1106-Turbo, while also being more cost-effective. With a commitment to open-source, we provide access to many of the base models we utilize. When you fine-tune Mistral and Llama 2, you maintain ownership of your weights and can download them whenever needed. Embrace the future of model training and deployment with OpenPipe's comprehensive tools and features.
  • 12
    Deepchecks Reviews

    Deepchecks

    Deepchecks

    $1,000 per month
    Launch top-notch LLM applications swiftly while maintaining rigorous testing standards. You should never feel constrained by the intricate and often subjective aspects of LLM interactions. Generative AI often yields subjective outcomes, and determining the quality of generated content frequently necessitates the expertise of a subject matter professional. If you're developing an LLM application, you're likely aware of the myriad constraints and edge cases that must be managed before a successful release. Issues such as hallucinations, inaccurate responses, biases, policy deviations, and potentially harmful content must all be identified, investigated, and addressed both prior to and following the launch of your application. Deepchecks offers a solution that automates the assessment process, allowing you to obtain "estimated annotations" that only require your intervention when absolutely necessary. With over 1000 companies utilizing our platform and integration into more than 300 open-source projects, our core LLM product is both extensively validated and reliable. You can efficiently validate machine learning models and datasets with minimal effort during both research and production stages, streamlining your workflow and improving overall efficiency. This ensures that you can focus on innovation without sacrificing quality or safety.
  • 13
    TruLens Reviews

    TruLens

    TruLens

    Free
    TruLens is a versatile open-source Python library aimed at the systematic evaluation and monitoring of Large Language Model (LLM) applications. It features detailed instrumentation, feedback mechanisms, and an intuitive interface that allows developers to compare and refine various versions of their applications, thereby promoting swift enhancements in LLM-driven projects. The library includes programmatic tools that evaluate the quality of inputs, outputs, and intermediate results, enabling efficient and scalable assessments. With its precise, stack-agnostic instrumentation and thorough evaluations, TruLens assists in pinpointing failure modes while fostering systematic improvements in applications. Developers benefit from an accessible interface that aids in comparing different application versions, supporting informed decision-making and optimization strategies. TruLens caters to a wide range of applications, including but not limited to question-answering, summarization, retrieval-augmented generation, and agent-based systems, making it a valuable asset for diverse development needs. As developers leverage TruLens, they can expect to achieve more reliable and effective LLM applications.
  • 14
    Traceloop Reviews

    Traceloop

    Traceloop

    $59 per month
    Traceloop is an all-encompassing observability platform tailored for the monitoring, debugging, and quality assessment of outputs generated by Large Language Models (LLMs). It features real-time notifications for any unexpected variations in output quality and provides execution tracing for each request, allowing for gradual implementation of changes to models and prompts. Developers can effectively troubleshoot and re-execute production issues directly within their Integrated Development Environment (IDE), streamlining the debugging process. The platform is designed to integrate smoothly with the OpenLLMetry SDK and supports a variety of programming languages, including Python, JavaScript/TypeScript, Go, and Ruby. To evaluate LLM outputs comprehensively, Traceloop offers an extensive array of metrics that encompass semantic, syntactic, safety, and structural dimensions. These metrics include QA relevance, faithfulness, overall text quality, grammatical accuracy, redundancy detection, focus evaluation, text length, word count, and the identification of sensitive information such as Personally Identifiable Information (PII), secrets, and toxic content. Additionally, it provides capabilities for validation through regex, SQL, and JSON schema, as well as code validation, ensuring a robust framework for the assessment of model performance. With such a diverse toolkit, Traceloop enhances the reliability and effectiveness of LLM outputs significantly.
  • 15
    Ragas Reviews

    Ragas

    Ragas

    Free
    Ragas is a comprehensive open-source framework aimed at testing and evaluating applications that utilize Large Language Models (LLMs). It provides automated metrics to gauge performance and resilience, along with the capability to generate synthetic test data that meets specific needs, ensuring quality during both development and production phases. Furthermore, Ragas is designed to integrate smoothly with existing technology stacks, offering valuable insights to enhance the effectiveness of LLM applications. The project is driven by a dedicated team that combines advanced research with practical engineering strategies to support innovators in transforming the landscape of LLM applications. Users can create high-quality, diverse evaluation datasets that are tailored to their specific requirements, allowing for an effective assessment of their LLM applications in real-world scenarios. This approach not only fosters quality assurance but also enables the continuous improvement of applications through insightful feedback and automatic performance metrics that clarify the robustness and efficiency of the models. Additionally, Ragas stands as a vital resource for developers seeking to elevate their LLM projects to new heights.
  • 16
    DeepEval Reviews

    DeepEval

    Confident AI

    Free
    DeepEval offers an intuitive open-source framework designed for the assessment and testing of large language model systems, similar to what Pytest does but tailored specifically for evaluating LLM outputs. It leverages cutting-edge research to measure various performance metrics, including G-Eval, hallucinations, answer relevancy, and RAGAS, utilizing LLMs and a range of other NLP models that operate directly on your local machine. This tool is versatile enough to support applications developed through methods like RAG, fine-tuning, LangChain, or LlamaIndex. By using DeepEval, you can systematically explore the best hyperparameters to enhance your RAG workflow, mitigate prompt drift, or confidently shift from OpenAI services to self-hosting your Llama2 model. Additionally, the framework features capabilities for synthetic dataset creation using advanced evolutionary techniques and integrates smoothly with well-known frameworks, making it an essential asset for efficient benchmarking and optimization of LLM systems. Its comprehensive nature ensures that developers can maximize the potential of their LLM applications across various contexts.
  • 17
    promptfoo Reviews

    promptfoo

    promptfoo

    Free
    Promptfoo proactively identifies and mitigates significant risks associated with large language models before they reach production. The founders boast a wealth of experience in deploying and scaling AI solutions for over 100 million users, utilizing automated red-teaming and rigorous testing to address security, legal, and compliance challenges effectively. By adopting an open-source, developer-centric methodology, Promptfoo has become the leading tool in its field, attracting a community of more than 20,000 users. It offers custom probes tailored to your specific application, focusing on identifying critical failures instead of merely targeting generic vulnerabilities like jailbreaks and prompt injections. With a user-friendly command-line interface, live reloading, and efficient caching, users can operate swiftly without the need for SDKs, cloud services, or login requirements. This tool is employed by teams reaching millions of users and is backed by a vibrant open-source community. Users can create dependable prompts, models, and retrieval-augmented generation (RAG) systems with benchmarks that align with their unique use cases. Additionally, it enhances the security of applications through automated red teaming and pentesting, while also expediting evaluations via its caching, concurrency, and live reloading features. Consequently, Promptfoo stands out as a comprehensive solution for developers aiming for both efficiency and security in their AI applications.
  • 18
    Label Studio Reviews
    Introducing the ultimate data annotation tool that offers unparalleled flexibility and ease of installation. Users can create customized user interfaces or opt for ready-made labeling templates tailored to their specific needs. The adaptable layouts and templates seamlessly integrate with your dataset and workflow requirements. It supports various object detection methods in images, including boxes, polygons, circles, and key points, and allows for the segmentation of images into numerous parts. Additionally, machine learning models can be utilized to pre-label data and enhance efficiency throughout the annotation process. Features such as webhooks, a Python SDK, and an API enable users to authenticate, initiate projects, import tasks, and manage model predictions effortlessly. Save valuable time by leveraging predictions to streamline your labeling tasks, thanks to the integration with ML backends. Furthermore, users can connect to cloud object storage solutions like S3 and GCP to label data directly in the cloud. The Data Manager equips you with advanced filtering options to effectively prepare and oversee your dataset. This platform accommodates multiple projects, diverse use cases, and various data types, all in one convenient space. By simply typing in the configuration, you can instantly preview the labeling interface. Live serialization updates at the bottom of the page provide a real-time view of what Label Studio anticipates as input, ensuring a smooth user experience. This tool not only improves annotation accuracy but also fosters collaboration among teams working on similar projects.
  • 19
    Portkey Reviews

    Portkey

    Portkey.ai

    $49 per month
    LMOps is a stack that allows you to launch production-ready applications for monitoring, model management and more. Portkey is a replacement for OpenAI or any other provider APIs. Portkey allows you to manage engines, parameters and versions. Switch, upgrade, and test models with confidence. View aggregate metrics for your app and users to optimize usage and API costs Protect your user data from malicious attacks and accidental exposure. Receive proactive alerts if things go wrong. Test your models in real-world conditions and deploy the best performers. We have been building apps on top of LLM's APIs for over 2 1/2 years. While building a PoC only took a weekend, bringing it to production and managing it was a hassle! We built Portkey to help you successfully deploy large language models APIs into your applications. We're happy to help you, regardless of whether or not you try Portkey!
  • 20
    Pezzo Reviews
    Pezzo serves as an open-source platform for LLMOps, specifically designed for developers and their teams. With merely two lines of code, users can effortlessly monitor and troubleshoot AI operations, streamline collaboration and prompt management in a unified location, and swiftly implement updates across various environments. This efficiency allows teams to focus more on innovation rather than operational challenges.
  • 21
    RagaAI Reviews
    RagaAI stands out as the premier AI testing platform, empowering businesses to minimize risks associated with artificial intelligence while ensuring that their models are both secure and trustworthy. By effectively lowering AI risk exposure in both cloud and edge environments, companies can also manage MLOps expenses more efficiently through smart recommendations. This innovative foundation model is crafted to transform the landscape of AI testing. Users can quickly pinpoint necessary actions to address any dataset or model challenges. Current AI-testing practices often demand significant time investments and hinder productivity during model development, leaving organizations vulnerable to unexpected risks that can lead to subpar performance after deployment, ultimately wasting valuable resources. To combat this, we have developed a comprehensive, end-to-end AI testing platform designed to significantly enhance the AI development process and avert potential inefficiencies and risks after deployment. With over 300 tests available, our platform ensures that every model, data, and operational issue is addressed, thereby speeding up the AI development cycle through thorough testing. This rigorous approach not only saves time but also maximizes the return on investment for businesses navigating the complex AI landscape.
  • 22
    Opik Reviews

    Opik

    Comet

    $39 per month
    With a suite observability tools, you can confidently evaluate, test and ship LLM apps across your development and production lifecycle. Log traces and spans. Define and compute evaluation metrics. Score LLM outputs. Compare performance between app versions. Record, sort, find, and understand every step that your LLM app makes to generate a result. You can manually annotate and compare LLM results in a table. Log traces in development and production. Run experiments using different prompts, and evaluate them against a test collection. You can choose and run preconfigured evaluation metrics, or create your own using our SDK library. Consult the built-in LLM judges to help you with complex issues such as hallucination detection, factuality and moderation. Opik LLM unit tests built on PyTest provide reliable performance baselines. Build comprehensive test suites for every deployment to evaluate your entire LLM pipe-line.
  • 23
    Arize Phoenix Reviews
    Phoenix is an open-source library aimed at enhancing observability for experimentation, assessment, and troubleshooting. It empowers AI engineers and data scientists to swiftly visualize data, assess performance, identify issues, and export data for enhancements. Developed by Arize AI, the creators of a leading AI observability platform, alongside a dedicated group of core contributors, Phoenix seamlessly integrates with OpenTelemetry and OpenInference instrumentation. The primary package for Phoenix is known as arize-phoenix, and it includes various helper packages tailored for specific needs. Our semantic layer is designed to incorporate LLM telemetry within OpenTelemetry, facilitating the automatic instrumentation of widely-used packages. This open-source library supports tracing for AI applications, allowing for both manual instrumentation and integrations with platforms such as LlamaIndex, Langchain, and OpenAI. LLM tracing meticulously tracks the pathways taken by requests as they navigate through various stages or components of an LLM application, ensuring comprehensive observability. This capability is crucial for optimizing AI workflows and enhancing overall system performance.
  • 24
    HoneyHive Reviews
    AI engineering can be transparent rather than opaque. With a suite of tools for tracing, assessment, prompt management, and more, HoneyHive emerges as a comprehensive platform for AI observability and evaluation, aimed at helping teams create dependable generative AI applications. This platform equips users with resources for model evaluation, testing, and monitoring, promoting effective collaboration among engineers, product managers, and domain specialists. By measuring quality across extensive test suites, teams can pinpoint enhancements and regressions throughout the development process. Furthermore, it allows for the tracking of usage, feedback, and quality on a large scale, which aids in swiftly identifying problems and fostering ongoing improvements. HoneyHive is designed to seamlessly integrate with various model providers and frameworks, offering the necessary flexibility and scalability to accommodate a wide range of organizational requirements. This makes it an ideal solution for teams focused on maintaining the quality and performance of their AI agents, delivering a holistic platform for evaluation, monitoring, and prompt management, ultimately enhancing the overall effectiveness of AI initiatives. As organizations increasingly rely on AI, tools like HoneyHive become essential for ensuring robust performance and reliability.
  • 25
    DagsHub Reviews

    DagsHub

    DagsHub

    $9 per month
    DagsHub serves as a collaborative platform tailored for data scientists and machine learning practitioners to effectively oversee and optimize their projects. By merging code, datasets, experiments, and models within a cohesive workspace, it promotes enhanced project management and teamwork among users. Its standout features comprise dataset oversight, experiment tracking, a model registry, and the lineage of both data and models, all offered through an intuitive user interface. Furthermore, DagsHub allows for smooth integration with widely-used MLOps tools, which enables users to incorporate their established workflows seamlessly. By acting as a centralized repository for all project elements, DagsHub fosters greater transparency, reproducibility, and efficiency throughout the machine learning development lifecycle. This platform is particularly beneficial for AI and ML developers who need to manage and collaborate on various aspects of their projects, including data, models, and experiments, alongside their coding efforts. Notably, DagsHub is specifically designed to handle unstructured data types, such as text, images, audio, medical imaging, and binary files, making it a versatile tool for diverse applications. In summary, DagsHub is an all-encompassing solution that not only simplifies the management of projects but also enhances collaboration among team members working across different domains.
  • Previous
  • You're on page 1
  • 2
  • Next