Traceloop is an all-encompassing observability platform tailored for the monitoring, debugging, and quality assessment of outputs generated by Large Language Models (LLMs). It features real-time notifications for any unexpected variations in output quality and provides execution tracing for each request, allowing for gradual implementation of changes to models and prompts. Developers can effectively troubleshoot and re-execute production issues directly within their Integrated Development Environment (IDE), streamlining the debugging process. The platform is designed to integrate smoothly with the OpenLLMetry SDK and supports a variety of programming languages, including Python, JavaScript/TypeScript, Go, and Ruby. To evaluate LLM outputs comprehensively, Traceloop offers an extensive array of metrics that encompass semantic, syntactic, safety, and structural dimensions. These metrics include QA relevance, faithfulness, overall text quality, grammatical accuracy, redundancy detection, focus evaluation, text length, word count, and the identification of sensitive information such as Personally Identifiable Information (PII), secrets, and toxic content. Additionally, it provides capabilities for validation through regex, SQL, and JSON schema, as well as code validation, ensuring a robust framework for the assessment of model performance. With such a diverse toolkit, Traceloop enhances the reliability and effectiveness of LLM outputs significantly.