Best Web-Based Machine Learning Software of 2025 - Page 6

Find and compare the best Web-Based Machine Learning software in 2025

Use the comparison tool below to compare the top Web-Based Machine Learning software on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    HumanFirst Reviews
    HumanFirst revolutionizes the way you handle infrastructure and workflows for exploring, curating, and scaling your AI training data. Our solutions empower the expansion of NLU and NLP capabilities, significantly speeding up the advancement of conversational AI. By ensuring that authentic voice-of-the-customer data is consistently integrated, we enhance the relevance and effectiveness of your models. With HumanFirst Studio, managing voice and text data for training and refining natural language understanding (NLU) models becomes effortless. Eliminate expensive and inconsistent data ingestion and labeling procedures, opting instead for a streamlined experience that enables immediate enhancements to your AI performance using actual data. You can easily import requests from your Search and Help Center, emails, live chat, or voice call logs to ensure your AI continually learns to understand customer needs better. This allows for the discovery of intents and their enhancement in precision. The traditional approach of guessing which intents require training and manually creating training phrases can be cumbersome, often resulting in insufficient coverage and accuracy of intents, which can hinder the overall effectiveness of your AI solutions. Ultimately, embracing HumanFirst allows your organization to focus on what truly matters: delivering exceptional customer experiences driven by intelligent AI.
  • 2
    PredictSense Reviews
    PredictSense is an AI-powered machine learning platform that uses AutoML to power its end-to-end Machine Learning platform. Accelerating machine intelligence will fuel the technological revolution of tomorrow. AI is key to unlocking the value of enterprise data investments. PredictSense allows businesses to quickly create AI-driven advanced analytical solutions that can help them monetize their technology investments and critical data infrastructure. Data science and business teams can quickly develop and deploy robust technology solutions at scale. Integrate AI into your existing product ecosystem and quickly track GTM for new AI solution. AutoML's complex ML models allow you to save significant time, money and effort.
  • 3
    Qlearsite Reviews
    Transform employee feedback into practical insights, as comprehending your workforce is essential for achieving organisational success. Your employees hold the keys to prosperity, so leverage their insights to enhance your organisation through concise and effective surveys. With pre-designed question sets, automatic data analysis, and visual colour-coded results, reporting becomes effortless. Simplify the process of grasping your workplace dynamics, whether it's addressing turnover or enhancing inclusivity, by prioritising the voices of your people. This approach is vital for fostering continuous growth within your organisation. Gaining a clear understanding of your staff is straightforward with immediate scores and visually appealing dashboards, while sophisticated listening technology provides you with guidance to formulate strategies that resonate with your employees’ needs. Ultimately, listening to your workforce not only informs decision-making but also strengthens the foundation for a thriving organisational culture.
  • 4
    ioModel Reviews

    ioModel

    Twin Tech Labs

    The ioModel platform aims to empower analytics teams by granting them access to advanced machine learning models without requiring coding skills, thus greatly minimizing both development and upkeep expenses. Additionally, analysts can assess and comprehend the effectiveness of the models created on the platform through well-established statistical validation methods. In essence, the ioModel Research Platform is set to revolutionize machine learning in a manner akin to how spreadsheets transformed general computing. Built entirely on open-source technology, the ioModel Research Platform is accessible under the GPL License on GitHub, albeit without any support or warranty. We encourage our community to engage with us in shaping the roadmap, development, and governance of the Platform. Our commitment lies in fostering an open and transparent approach to advancing analytics, modeling, and innovation, while also ensuring that user feedback plays a pivotal role in the platform's evolution.
  • 5
    Azure Machine Learning Reviews
    Streamline the entire machine learning lifecycle from start to finish. Equip developers and data scientists with an extensive array of efficient tools for swiftly building, training, and deploying machine learning models. Enhance the speed of market readiness and promote collaboration among teams through leading-edge MLOps—akin to DevOps but tailored for machine learning. Drive innovation within a secure, reliable platform that prioritizes responsible AI practices. Cater to users of all expertise levels with options for both code-centric and drag-and-drop interfaces, along with automated machine learning features. Implement comprehensive MLOps functionalities that seamlessly align with existing DevOps workflows, facilitating the management of the entire machine learning lifecycle. Emphasize responsible AI by providing insights into model interpretability and fairness, securing data through differential privacy and confidential computing, and maintaining control over the machine learning lifecycle with audit trails and datasheets. Additionally, ensure exceptional compatibility with top open-source frameworks and programming languages such as MLflow, Kubeflow, ONNX, PyTorch, TensorFlow, Python, and R, thus broadening accessibility and usability for diverse projects. By fostering an environment that promotes collaboration and innovation, teams can achieve remarkable advancements in their machine learning endeavors.
  • 6
    Prevision Reviews
    The process of developing a model is inherently iterative, often spanning weeks, months, or even years, and it involves challenges such as reproducing results, maintaining version control, and auditing previous work. It is important to document each phase of model building, as well as the reasoning behind decisions made along the way. Rather than being a secretive file stored away, a model should serve as a clear and accessible resource for all stakeholders to monitor and evaluate consistently. Prevision.io facilitates this by enabling you to log every experiment during training, capturing its attributes, automated analyses, and various versions as your project evolves, regardless of whether you utilize our AutoML or your own methodologies. You can effortlessly experiment with a multitude of feature engineering techniques and algorithm options to create models that perform exceptionally well. With just a single command, the system can explore different feature engineering methods tailored to various data types, such as tabular data, text, or images, ensuring that you extract the maximum value from your datasets while enhancing overall model performance. This comprehensive approach not only streamlines the modeling process but also fosters collaboration and transparency among team members.
  • 7
    Reonomy Reviews
    Unlock vast amounts of disparate data. Our machine learning algorithms combine the previously dissimilar worlds of commercial real estate to provide property insight. Without a common language to standardize information sharing and collection, commercial real estate data has remained fragmented and isolated. Our machine learning algorithms can take data from any source, and restructure it using our universal language, the Reonomy ID. You can now simultaneously resolve disparate records, and also augment your database using the same technology. The Reonomy ID, powered by Artificial Intelligence can unlock the true potential of your commercial realty database. It maps all records, even lost, to the correct source with a clear identifier. This allows you to uncover new depths in the data you already have.
  • 8
    Datrics Reviews

    Datrics

    Datrics.ai

    $50/per month
    The platform allows non-practitioners to use machine learning and automates MLOps within enterprises. There is no need to have any prior knowledge. Simply upload your data to datrics.ai and you can do experiments, prototyping and self-service analytics faster using template pipelines. You can also create APIs and forecasting dashboards with just a few clicks.
  • 9
    Interplay Reviews
    Interplay Platform is a patented low-code platform with 475 pre-built Enterprises, AI, IoT drag-and-drop components. Interplay helps large organizations innovate faster. It's used as middleware and as a rapid app building platform by big companies like Circle K, Ulta Beauty, and many others. As middleware, it operates Pay-by-Plate (frictionless payments at the gas pump) in Europe, Weapons Detection (to predict robberies), AI-based Chat, online personalization tools, low price guarantee tools, computer vision applications such as damage estimation, and much more.
  • 10
    Google Cloud Datalab Reviews
    Cloud Datalab is a user-friendly interactive platform designed for data exploration, analysis, visualization, and machine learning. This robust tool, developed for the Google Cloud Platform, allows users to delve into, transform, and visualize data while building machine learning models efficiently. Operating on Compute Engine, it smoothly integrates with various cloud services, enabling you to concentrate on your data science projects without distractions. Built using Jupyter (previously known as IPython), Cloud Datalab benefits from a vibrant ecosystem of modules and a comprehensive knowledge base. It supports the analysis of data across BigQuery, AI Platform, Compute Engine, and Cloud Storage, utilizing Python, SQL, and JavaScript for BigQuery user-defined functions. Whether your datasets are in the megabytes or terabytes range, Cloud Datalab is equipped to handle your needs effectively. You can effortlessly query massive datasets in BigQuery, perform local analysis on sampled subsets of data, and conduct training jobs on extensive datasets within AI Platform without any interruptions. This versatility makes Cloud Datalab a valuable asset for data scientists aiming to streamline their workflows and enhance productivity.
  • 11
    Google Cloud AutoML Reviews
    Cloud AutoML represents a collection of machine learning tools that allow developers with minimal expertise in the field to create tailored models that meet their specific business requirements. This technology harnesses Google's advanced transfer learning and neural architecture search methodologies. By utilizing over a decade of exclusive research advancements from Google, Cloud AutoML enables your machine learning models to achieve enhanced accuracy and quicker performance. With its user-friendly graphical interface, you can effortlessly train, assess, refine, and launch models using your own data. In just a few minutes, you can develop a personalized machine learning model. Additionally, Google’s human labeling service offers a dedicated team to assist in annotating or refining your data labels, ensuring that your models are trained on top-notch data for optimal results. This combination of advanced technology and user support makes Cloud AutoML an accessible option for businesses looking to leverage machine learning.
  • 12
    Google Deep Learning Containers Reviews
    Accelerate the development of your deep learning project on Google Cloud: Utilize Deep Learning Containers to swiftly create prototypes within a reliable and uniform environment for your AI applications, encompassing development, testing, and deployment phases. These Docker images are pre-optimized for performance, thoroughly tested for compatibility, and designed for immediate deployment using popular frameworks. By employing Deep Learning Containers, you ensure a cohesive environment throughout the various services offered by Google Cloud, facilitating effortless scaling in the cloud or transitioning from on-premises setups. You also enjoy the versatility of deploying your applications on platforms such as Google Kubernetes Engine (GKE), AI Platform, Cloud Run, Compute Engine, Kubernetes, and Docker Swarm, giving you multiple options to best suit your project's needs. This flexibility not only enhances efficiency but also enables you to adapt quickly to changing project requirements.
  • 13
    Supervisely Reviews
    The premier platform designed for the complete computer vision process allows you to evolve from image annotation to precise neural networks at speeds up to ten times quicker. Utilizing our exceptional data labeling tools, you can convert your images, videos, and 3D point clouds into top-notch training data. This enables you to train your models, monitor experiments, visualize results, and consistently enhance model predictions, all while constructing custom solutions within a unified environment. Our self-hosted option ensures data confidentiality, offers robust customization features, and facilitates seamless integration with your existing technology stack. This comprehensive solution for computer vision encompasses multi-format data annotation and management, large-scale quality control, and neural network training within an all-in-one platform. Crafted by data scientists for their peers, this powerful video labeling tool draws inspiration from professional video editing software and is tailored for machine learning applications and beyond. With our platform, you can streamline your workflow and significantly improve the efficiency of your computer vision projects.
  • 14
    BasicAI Reviews
    Our annotation platform, which operates in the cloud, enables you to initiate projects, carry out annotations, track your progress, and retrieve the results of the annotations. You have the option to delegate your tasks to either our professional managed annotation team or to our worldwide crowd of annotators. This flexibility ensures that you can choose the best fit for your specific project needs.
  • 15
    Google Cloud Text-to-Speech Reviews
    Utilize an API that leverages Google's advanced AI technologies to transform text into natural-sounding speech. With the foundation laid by DeepMind’s expertise in speech synthesis, this API offers voices that closely resemble human speech patterns. You can choose from an extensive selection of over 220 voices in more than 40 languages and their various dialects, such as Mandarin, Hindi, Spanish, Arabic, and Russian. Opt for the voice that best aligns with your user demographic and application requirements. Additionally, you have the opportunity to create a distinctive voice that embodies your brand across all customer interactions, rather than relying on a generic voice that might be used by other companies. By training a custom voice model with your own audio samples, you can achieve a more unique and authentic voice for your organization. This versatility allows you to define and select the voice profile that best matches your company while effortlessly adapting to any evolving voice demands without the necessity of re-recording new phrases. This capability ensures your brand maintains a consistent audio identity that resonates with your audience.
  • 16
    Superb AI Reviews
    Superb AI introduces a cutting-edge machine learning data platform designed to empower AI teams to develop superior AI solutions more efficiently. The Superb AI Suite functions as an enterprise SaaS platform tailored for ML engineers, product developers, researchers, and data annotators, facilitating streamlined training data workflows that conserve both time and financial resources. Notably, a significant number of ML teams allocate over half of their efforts to managing training datasets, a challenge that Superb AI addresses effectively. Customers utilizing our platform have experienced an impressive 80% reduction in the time required to commence model training. With a fully managed workforce, comprehensive labeling tools, rigorous training data quality assurance, pre-trained model predictions, advanced auto-labeling capabilities, and efficient dataset filtering and integration, Superb AI enhances the data management experience. Furthermore, our platform offers robust developer tools and seamless ML workflow integrations, making training data management simpler and more efficient than ever before. With enterprise-level features catering to every aspect of an ML organization, Superb AI is revolutionizing the way teams approach machine learning projects.
  • 17
    Accern Reviews
    The Accern No-Code NLP Platform empowers citizen data scientists to extract insights from unstructured data, minimize time to value and maximize ROI with pre-built AI/ML/NLP solutions. Recognized as the first No-Code NLP platform and industry leader with the highest accuracy scores, Accern also enables data scientists to customize end-to-end workflows that enhance existing models and enrich BI dashboards.
  • 18
    IBM Watson Studio Reviews
    Create, execute, and oversee AI models while enhancing decision-making at scale across any cloud infrastructure. IBM Watson Studio enables you to implement AI seamlessly anywhere as part of the IBM Cloud Pak® for Data, which is the comprehensive data and AI platform from IBM. Collaborate across teams, streamline the management of the AI lifecycle, and hasten the realization of value with a versatile multicloud framework. You can automate the AI lifecycles using ModelOps pipelines and expedite data science development through AutoAI. Whether preparing or constructing models, you have the option to do so visually or programmatically. Deploying and operating models is made simple with one-click integration. Additionally, promote responsible AI governance by ensuring your models are fair and explainable to strengthen business strategies. Leverage open-source frameworks such as PyTorch, TensorFlow, and scikit-learn to enhance your projects. Consolidate development tools, including leading IDEs, Jupyter notebooks, JupyterLab, and command-line interfaces, along with programming languages like Python, R, and Scala. Through the automation of AI lifecycle management, IBM Watson Studio empowers you to build and scale AI solutions with an emphasis on trust and transparency, ultimately leading to improved organizational performance and innovation.
  • 19
    Peltarion Reviews
    The Peltarion Platform is an accessible low-code environment for deep learning that empowers users to swiftly create AI-driven solutions that can scale commercially. It facilitates the entire process of building, adjusting, refining, and deploying deep learning models seamlessly. This comprehensive platform enables you to manage everything from data uploads to model creation and deployment in one place. Renowned organizations such as NASA, Tesla, Dell, and Harvard have leveraged the Peltarion Platform and its earlier version to address complex challenges. Users can either develop their own AI models or take advantage of our pre-trained options, utilizing a simple drag-and-drop interface, including access to the latest advancements. You have complete control over the entire development cycle, from construction and training to fine-tuning and deployment of AI solutions, all seamlessly integrated. By operationalizing AI through this platform, businesses can unlock significant value. For those with no background in AI, our Faster AI course is designed to provide foundational knowledge, and upon completion of seven concise modules, participants will gain the ability to create and customize their own AI models on the Peltarion platform, fostering a new generation of AI practitioners. This initiative not only enhances individual skill sets but also contributes to the broader adoption of AI technology in various industries.
  • 20
    Iterative Reviews
    AI teams encounter obstacles that necessitate the development of innovative technologies, which we specialize in creating. Traditional data warehouses and lakes struggle to accommodate unstructured data types such as text, images, and videos. Our approach integrates AI with software development, specifically designed for data scientists, machine learning engineers, and data engineers alike. Instead of reinventing existing solutions, we provide a swift and cost-effective route to bring your projects into production. Your data remains securely stored under your control, and model training occurs on your own infrastructure. By addressing the limitations of current data handling methods, we ensure that AI teams can effectively meet their challenges. Our Studio functions as an extension of platforms like GitHub, GitLab, or BitBucket, allowing seamless integration. You can choose to sign up for our online SaaS version or reach out for an on-premise installation tailored to your needs. This flexibility allows organizations of all sizes to adopt our solutions effectively.
  • 21
    Intel Tiber AI Studio Reviews
    Intel® Tiber™ AI Studio serves as an all-encompassing machine learning operating system designed to streamline and unify the development of artificial intelligence. This robust platform accommodates a diverse array of AI workloads and features a hybrid multi-cloud infrastructure that enhances the speed of ML pipeline creation, model training, and deployment processes. By incorporating native Kubernetes orchestration and a meta-scheduler, Tiber™ AI Studio delivers unparalleled flexibility for managing both on-premises and cloud resources. Furthermore, its scalable MLOps framework empowers data scientists to seamlessly experiment, collaborate, and automate their machine learning workflows, all while promoting efficient and cost-effective resource utilization. This innovative approach not only boosts productivity but also fosters a collaborative environment for teams working on AI projects.
  • 22
    Oracle Machine Learning Reviews
    Machine learning reveals concealed patterns and valuable insights within enterprise data, ultimately adding significant value to businesses. Oracle Machine Learning streamlines the process of creating and deploying machine learning models for data scientists by minimizing data movement, incorporating AutoML technology, and facilitating easier deployment. Productivity for data scientists and developers is enhanced while the learning curve is shortened through the use of user-friendly Apache Zeppelin notebook technology based on open source. These notebooks accommodate SQL, PL/SQL, Python, and markdown interpreters tailored for Oracle Autonomous Database, enabling users to utilize their preferred programming languages when building models. Additionally, a no-code interface that leverages AutoML on Autonomous Database enhances accessibility for both data scientists and non-expert users, allowing them to harness powerful in-database algorithms for tasks like classification and regression. Furthermore, data scientists benefit from seamless model deployment through the integrated Oracle Machine Learning AutoML User Interface, ensuring a smoother transition from model development to application. This comprehensive approach not only boosts efficiency but also democratizes machine learning capabilities across the organization.
  • 23
    Obviously AI Reviews

    Obviously AI

    Obviously AI

    $75 per month
    Experience the entire journey of developing machine learning algorithms and forecasting results with just a single click. Not every dataset is inherently suitable for machine learning; leverage the Data Dialog to effortlessly refine your data without the hassle of file manipulation. You can easily distribute your prediction reports among your team or make them publicly accessible, allowing anyone to engage with your model and generate predictions. Integrate dynamic ML predictions directly into your application through our user-friendly low-code API. Assess factors like willingness to pay, evaluate leads, and more, all in real-time. Obviously AI equips you with the latest groundbreaking algorithms while ensuring top-notch performance is maintained. You can now accurately forecast revenue, streamline supply chains, and tailor marketing efforts to individual needs. With just a CSV upload or a quick integration with your preferred data sources, you can select your prediction column from a convenient dropdown menu and watch as we automatically construct the AI for you. Additionally, enjoy beautifully crafted visualizations of predicted outcomes, identify key influencers, and explore "what-if" scenarios to better understand potential futures. This innovative approach transforms the way you interact with data and make predictions.
  • 24
    IBM Cloud Pak for Data Reviews
    The primary obstacle in expanding AI-driven decision-making lies in the underutilization of data. IBM Cloud Pak® for Data provides a cohesive platform that integrates a data fabric, enabling seamless connection and access to isolated data, whether it resides on-premises or in various cloud environments, without necessitating data relocation. It streamlines data accessibility by automatically identifying and organizing data to present actionable knowledge assets to users, while simultaneously implementing automated policy enforcement to ensure secure usage. To further enhance the speed of insights, this platform incorporates a modern cloud data warehouse that works in harmony with existing systems. It universally enforces data privacy and usage policies across all datasets, ensuring compliance is maintained. By leveraging a high-performance cloud data warehouse, organizations can obtain insights more rapidly. Additionally, the platform empowers data scientists, developers, and analysts with a comprehensive interface to construct, deploy, and manage reliable AI models across any cloud infrastructure. Moreover, enhance your analytics capabilities with Netezza, a robust data warehouse designed for high performance and efficiency. This comprehensive approach not only accelerates decision-making but also fosters innovation across various sectors.
  • 25
    Datatron Reviews
    Datatron provides tools and features that are built from scratch to help you make machine learning in production a reality. Many teams realize that there is more to deploying models than just the manual task. Datatron provides a single platform that manages all your ML, AI and Data Science models in production. We can help you automate, optimize and accelerate your ML model production to ensure they run smoothly and efficiently. Data Scientists can use a variety frameworks to create the best models. We support any framework you use to build a model (e.g. TensorFlow and H2O, Scikit-Learn and SAS are supported. Explore models that were created and uploaded by your data scientists, all from one central repository. In just a few clicks, you can create scalable model deployments. You can deploy models using any language or framework. Your model performance will help you make better decisions.