Best OLAP Databases for Mac of 2025

Find and compare the best OLAP Databases for Mac in 2025

Use the comparison tool below to compare the top OLAP Databases for Mac on the market. You can filter results by user reviews, pricing, features, platform, region, support options, integrations, and more.

  • 1
    icCube Reviews
    Top Pick

    icCube

    $20,000/year
    30 Ratings
    Top Pick See Software
    Learn More
    icCube serves as a seamless alternative to SQL Server Analysis Services, offering a variety of advanced features: - A logically compatible OLAP model, with assistance for smooth migration - Continued support for Excel and other XMLA/MDX clients - Flexible deployment options, including a Docker version - Real-time dynamic MDX security, providing cell-level detail protection - Cutting-edge OLAP functionalities, including: - Over 100 new MDX functions - Categorization features - Subcube capabilities - Native integration with Java Additionally, icCube includes a patented MDX debugger. As an extra bonus, it also features a web-based BI solution that can be easily embedded.
  • 2
    IBM Db2 Reviews
    IBM Db2 encompasses a suite of data management solutions, prominently featuring the Db2 relational database. These offerings incorporate AI-driven functionalities designed to streamline the management of both structured and unstructured data across various on-premises and multicloud settings. By simplifying data accessibility, the Db2 suite empowers businesses to leverage the advantages of AI effectively. Most components of the Db2 family are integrated within the IBM Cloud Pak® for Data platform, available either as additional features or as built-in data source services, ensuring that nearly all data is accessible across hybrid or multicloud frameworks to support AI-driven applications. You can easily unify your transactional data repositories and swiftly extract insights through intelligent, universal querying across diverse data sources. The multimodel functionality helps reduce expenses by removing the necessity for data replication and migration. Additionally, Db2 offers enhanced flexibility, allowing for deployment on any cloud service provider, which further optimizes operational agility and responsiveness. This versatility in deployment options ensures that businesses can adapt their data management strategies as their needs evolve.
  • 3
    Greenplum Reviews

    Greenplum

    Greenplum Database

    Greenplum Database® stands out as a sophisticated, comprehensive, and open-source data warehouse solution. It excels in providing swift and robust analytics on data volumes that reach petabyte scales. Designed specifically for big data analytics, Greenplum Database is driven by a highly advanced cost-based query optimizer that ensures exceptional performance for analytical queries on extensive data sets. This project operates under the Apache 2 license, and we extend our gratitude to all current contributors while inviting new ones to join our efforts. In the Greenplum Database community, every contribution is valued, regardless of its size, and we actively encourage diverse forms of involvement. This platform serves as an open-source, massively parallel data environment tailored for analytics, machine learning, and artificial intelligence applications. Users can swiftly develop and implement models aimed at tackling complex challenges in fields such as cybersecurity, predictive maintenance, risk management, and fraud detection, among others. Dive into the experience of a fully integrated, feature-rich open-source analytics platform that empowers innovation.
  • 4
    SAP HANA Reviews
    SAP HANA is an in-memory database designed to handle both transactional and analytical workloads using a single copy of data, regardless of type. It effectively dissolves the barriers between transactional and analytical processes within organizations, facilitating rapid decision-making whether deployed on-premises or in the cloud. This innovative database management system empowers users to create intelligent, real-time solutions, enabling swift decision-making from a unified data source. By incorporating advanced analytics, it enhances the capabilities of next-generation transaction processing. Organizations can build data solutions that capitalize on cloud-native attributes such as scalability, speed, and performance. With SAP HANA Cloud, businesses can access reliable, actionable information from one cohesive platform while ensuring robust security, privacy, and data anonymization, reflecting proven enterprise standards. In today's fast-paced environment, an intelligent enterprise relies on timely insights derived from data, emphasizing the need for real-time delivery of such valuable information. As the demand for immediate access to insights grows, leveraging an efficient database like SAP HANA becomes increasingly critical for organizations aiming to stay competitive.
  • 5
    Exasol Reviews
    An in-memory, column-oriented database combined with a Massively Parallel Processing (MPP) architecture enables the rapid querying of billions of records within mere seconds. The distribution of queries across all nodes in a cluster ensures linear scalability, accommodating a larger number of users and facilitating sophisticated analytics. The integration of MPP, in-memory capabilities, and columnar storage culminates in a database optimized for exceptional data analytics performance. With various deployment options available, including SaaS, cloud, on-premises, and hybrid solutions, data analysis can be performed in any environment. Automatic tuning of queries minimizes maintenance efforts and reduces operational overhead. Additionally, the seamless integration and efficiency of performance provide enhanced capabilities at a significantly lower cost compared to traditional infrastructure. Innovative in-memory query processing has empowered a social networking company to enhance its performance, handling an impressive volume of 10 billion data sets annually. This consolidated data repository, paired with a high-speed engine, accelerates crucial analytics, leading to better patient outcomes and improved financial results for the organization. As a result, businesses can leverage this technology to make quicker data-driven decisions, ultimately driving further success.
  • 6
    Infobright DB Reviews
    Infobright DB is an enterprise-grade database that utilizes a columnar storage architecture, enabling business analysts to efficiently analyze data and rapidly generate reports. This versatile database can be implemented both on-premise and in cloud environments. It is designed to store and analyze substantial amounts of big data, facilitating interactive business intelligence and handling complex queries with ease. By enhancing query performance and lowering storage costs, it significantly boosts overall efficiency in analytics and reporting processes. With capabilities to manage hundreds of terabytes of data, Infobright DB overcomes the limitations often faced by traditional databases. This solution supports big data applications while removing the need for indexing and partitioning, resulting in no administrative burden. In an era where machine data is growing exponentially, IgniteTech’s Infobright DB is purpose-built to deliver exceptional performance for large quantities of machine-generated information. Furthermore, it allows users to manage intricate ad hoc analytical environments without the heavy database administration demands seen in other solutions. This makes it an invaluable tool for organizations seeking to optimize their data handling and analysis.
  • 7
    HEAVY.AI Reviews
    HEAVY.AI is a pioneer in accelerated analysis. The HEAVY.AI platform can be used by government and business to uncover insights in data that is beyond the reach of traditional analytics tools. The platform harnesses the huge parallelism of modern CPU/GPU hardware and is available both in the cloud or on-premise. HEAVY.AI was developed from research at Harvard and MIT Computer Science and Artificial Intelligence Laboratory. You can go beyond traditional BI and GIS and extract high-quality information from large datasets with no lag by leveraging modern GPU and CPU hardware. To get a complete picture of what, when and where, unify and explore large geospatial or time-series data sets. Combining interactive visual analytics, hardware accelerated SQL, advanced analytics & data sciences frameworks, you can find the opportunity and risk in your enterprise when it matters most.
  • Previous
  • You're on page 1
  • Next